K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)

Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)

\(=5\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha\)

\(=5+\dfrac{16}{25}=\dfrac{141}{25}\)

15 tháng 7 2021

phần b ?

 

\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)

\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)

\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)

\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)

17 tháng 8 2016

a/ \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2=2\left(sin^2\alpha+cos^2\alpha\right)=2\)

b/ \(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)-\left(1+cotg^2\alpha\right)\left(1-cos^2\alpha\right)\)

\(=\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)\left(1-sin^2\alpha\right)-\left(1+\frac{cos^2\alpha}{sin^2\alpha}\right)\left(1-cos^2\alpha\right)\)

\(=\frac{1}{cos^2\alpha}.cos^2\alpha-\frac{1}{sin^2\alpha}.sin^2\alpha=1-1=0\)

b: Xét ΔADC vuông tại D và ΔBEC vuông tại E có 

\(\widehat{C}\) chung

Do đó: ΔADC\(\sim\)ΔBEC

2 tháng 9 2018

bài 1: ta có : \(cos^220+cos^240+cos^250+cos^270\)

\(=cos^220+cos^270+cos^240+cos^250\)

\(=cos^220+cos^2\left(90-20\right)+cos^240+cos^2\left(90-40\right)\)

\(=cos^220+sin^220+cos^240+sin^240=1+1=2\)

bài 2: a) ta có : \(cot^2\alpha-cos^2\alpha=cos^2\alpha\left(\dfrac{1}{sin^2\alpha}-1\right)=cos^2\alpha.\left(\dfrac{1-sin^2\alpha}{sin^2\alpha}\right)\)

\(=cos^2\alpha.\left(\dfrac{cos^2\alpha}{sin^2\alpha}\right)=cos^2\alpha.cot^2\alpha\left(đpcm\right)\)

b) ta có : \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Leftrightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Leftrightarrow\dfrac{1+cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1-cos\alpha}\left(đpcm\right)\)

3 tháng 9 2018

dạ e cảm ơn nh ạ!!!!hihi

20 tháng 7 2016

\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)

19 tháng 8 2016

1-sin2α=cos2α

 

26 tháng 8 2018

tớ cần câu trả lời

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

Bài 2: 

a: \(\sin\alpha=\sqrt{1-\left(\dfrac{2}{5}\right)^2}=\dfrac{\sqrt{21}}{5}\)

\(\tan\alpha=\dfrac{\sqrt{21}}{5}:\dfrac{2}{5}=\dfrac{\sqrt{21}}{2}\)

\(\cot\alpha=\dfrac{2}{\sqrt{21}}=\dfrac{2\sqrt{21}}{21}\)

b: Đặt \(\cos\alpha=a;\sin\alpha=b\)

Theo đề, ta có: a-b=1/5

=>a=b+1/5

Ta có: \(a^2+b^2=1\)

\(\Leftrightarrow b^2+\dfrac{2}{5}b+\dfrac{1}{25}+b^2-1=0\)

\(\Leftrightarrow2b^2+\dfrac{2}{5}b-\dfrac{24}{25}=0\)

\(\Leftrightarrow10b^2+2b-24=0\)

=>b=4/5

=>a=3/5

\(\cot\alpha=\dfrac{a}{b}=\dfrac{3}{4}\)