Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a) \(x^2+4y^2+4xy-16\)
\(=x^2+2.2xy+\left(2y\right)^2-4^2\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
b) ta có:
\(\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)
\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)
\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)
\(=y^2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x
nên tại y = 10
giá trị của biểu thức trên bằng y2 = 102 = 100
1:
a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
2
\(-2x^2-4x+6=0\)
\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
1,
a) x( x2 + 2x +1) = x(x+1)2
b)25 - (x-2y)2 = (5-x+2y)(5+x-2y)
2,
(x-1)(x+3)=0
<=>x=1 hoặc x=-3
\(a,x^2-2x+2y-xy\)
\(=\left(x^2-2x\right)+\left(2y-xy\right)\)
\(=x\left(x-2\right)+y\left(2-x\right)\)
\(=x\left(x-2\right)-y\left(x-2\right)\)
\(=\left(x-2\right)\left(x-y\right)\)
\(b,x^2+4xy-16+4y^2\)
\(=\left(x^2+4xy+4y^2\right)-16\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
c) \(x^2+y^2+xz+yz+2xy\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
b) \(x^3+3x^2-3x-1\)
\(=\left(x^3-1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)
1)
a) \(2x^2-12x+18+2xy-6y\)
\(=2x^2-6x-6x+18+2xy-6y\)
\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)
\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)
\(=\left(x-3\right)\left(2y+2x-6\right)\)
\(=2\left(x-3\right)\left(y+x-3\right)\)
b) \(x^2+4x-4y^2+8y\)
\(=x^2+4x-4y^2+8y+2xy-2xy\)
\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)
\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)
\(=\left(2y+x\right)\left(-2y+x+4\right)\)
2) \(5x^3-3x^2+10x-6=0\)
\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)
Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)
\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Bài làm
a) 2x2 - 12x + 18 + 2xy - 6y
= 2x2 - 6x - 6x + 18 + 2xy - 6y
= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )
= 2x( y + x - 3 ) - 6( y + x - 3 )
= ( 2x - 6 ) ( y + x - 3 )
# Học tốt #
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OKz
1. x2 - 16 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 16
= ( x - 2y )2 - 42
= ( x - 2y - 4 )( x - 2y + 4 )
2. 4x2 + 4x - 3
= ( 4x2 + 4x + 1 ) - 4
= ( 2x + 1 )2 - 2
= ( 2x + 1 - 2 )( 2x + 1 + 2 )
= ( 2x - 1 )( 2x + 3 )
3. x2 - x - 12
= x2 + 3x - 4x - 12
= x( x + 3 ) - 4( x + 3 )
= ( x + 3 )( x - 4 )
4. 3x + 3y - x2 - 2xy - y2
= ( 3x + 3y ) - ( x2 + 2xy + y2 )
= 3( x + y ) - ( x + y )2
= ( x + y )( 3 - x - y )
5. 4y4 + 16
= 4( y4 + 4 )
= 4( y4 + 4y2 + 4 - 4y2 )
= 4[ ( y4 + 4y2 + 4 ) - 4y2 ]
= 4[ ( y2 + 2 )2 - ( 2y )2 ]
= 4( y2 - 2y + 2 )( y2 + 2y + 2 )
a,\(x^2-16-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-16\)
\(=\left(x-2y\right)^2-4^2\)
\(=\left(x-2y-4\right)\left(x-2y+4\right)\)
b,\(4x^2+4x-3\)
\(=4x^2-2x+6x-3\)
\(=\left(4x^2-2x\right)+\left(6x-3\right)\)
\(=2x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
c,\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2+3x\right)-\left(4x-12\right)\)
\(=x\left(x+3\right)-4\left(x+3\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
1
a) x2 + 4y2 + 4xy - 16
=(x2 + 4xy + 4y2) - 16
=(x+2y)2 - 16
=(x+2y-4)(x+2y+4)
b)x2 + y2 - 2x + 4y + 5 =0
<=> x2 - 2x + 1 + y2 - 4y + 4=0
<=> (x-1)2 + (y-2)2 =0
<=> x=1 và y=2