K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

\(x^2+y^2-4x-6y+13\)

\(=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)\)

\(=\left(x-2\right)^2+\left(y-3\right)^2\)

hk

tốt...

30 tháng 8 2015

x^2 + 3xy + 2y^2 =  0 

=> x^2 + xy + 2xy + 2y^2 = 0 

=> x(x+y) + 2y ( x+  y ) = 0 =

=> ( x+  2y)( x + y ) = 0 

=> x = -2y hoặc x = -y 

(+) x = -2y thay vào ta có :

 8y^2 + 6y + 5 = 0 giải ra y => x 

(+) thay x = -y ta có :

2y^2 - 3y + 5 = 0 tương tự 

30 tháng 8 2015

Nguyễn Đình Dũng tục tỉu thế

28 tháng 8 2020

4x2 + 2y2 + 2z2 - 4xy + 2yz - 4xz - 6y - 10z + 34 = 0

<=> [ ( 4x2 - 4xy + y2 ) - 4xz + 2yz + z2 ] + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

\(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)+\left(y-3\right)^2+\left(z-5\right)^2\ge0\forall x,y,z\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào S ta được :

S = ( x - 4 )2020 + ( y - 3 )2020 + ( z - 5 )2020

    = ( 4 - 4 )2020 + ( 3 - 3 )2020 + ( 5 - 5 )2020

    = 0 + 0 + 0

    = 0

2 tháng 7 2019

\(D=x^2+2x\left(y+2\right)+2y^2+6y+10\)

\(=x^2+2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2+2y+1\right)+5\)

\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+\left(y+1\right)^2+5\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+5\ge5\forall x\)

\(\Rightarrow\)Min D = 5 tại \(\hept{\begin{cases}x+y+2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)

=.= hk tốt!!

2 tháng 7 2019

\(E=x^2+4xy+5y^2=x^2+4xy+4y^2+y^2=\left(x+2y\right)^2+y^2\ge0\forall x,y\)

=> Min E = 0 tại \(\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)