K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
3 tháng 8 2023

\(4x^2+4x+1=\left(x-2\right)^2\\ \Leftrightarrow\left(2x+1\right)^2=\left(x-2\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=x-2\\2x+1=2-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

21 tháng 6 2017

\(p=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2010\)\(=\left(x^3+1\right)+x-\left(x^3-1\right)+2010=x^3+1+x-x^3+1+2010=x+2012\)Với \(x=-2010\Rightarrow p=-2010+2012=2\)

\(q=16x\left(4x^2-5\right)-\left(4x+1\right)\left(16x^2-4x+1\right)=64x^3-80x-64x^3-1=-80x-1\)Với \(x=\dfrac{1}{5}\Rightarrow q=-80.\dfrac{1}{5}-1=-17\)

26 tháng 6 2021

a,sửa đề :  \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)

\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)

26 tháng 6 2021

b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)

\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)

\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

7 tháng 12 2019

d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)

d) đề là gì bn

2x+3)(4x26x+9)2(4x31)(2x+3)(4x2−6x+9)−2(4x3−1)

=8x3+278x3+2=29\

e)

(4x1)3(4x3)(16x2+3)(4x−1)3−(4x−3)(16x2+3)

=64x348x2+12x1(64x3+12x48x29)=64x3−48x2+12x−1−(64x3+12x−48x2−9)

=64x348x2+12x164x312x+48x2+9=64x3−48x2+12x−1−64x3−12x+48x2+9

=8

29 tháng 2 2020

đề không rõ nên mình làm như này:

c) \(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\)

d) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)

\(=29\)

29 tháng 2 2020

\(c, C=x(2x+1)-x^2(x+2)+x^3-x+3\)

\(C=2x^2+x-x^3-2x^2+x^3-x+3\)

\(C=3\)

\(d, (2x+3)(4x^2-6x+9)-2(4x^3-1)\)

\(=(8x^3+27)-2(4x^3-1)\)

\(=8x^3+27-8x^3+2\)\(=29\)

\(e, (4x-1)^3-(4x-3)(16x^2+3)\)

\(=(64x^3-48x^2+12x-1)-(64x^3+12x-48x^2-9)\)

\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)

\(=8\)

\(f, (x+1)^3-(x-1)^3-6(x+1)(x-1)\)

\(=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-6(x^2-1)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

\(=8\)

7 tháng 7 2016

a. \(x^2-4x+4=x^2-2.x.2+2^2=\left(x-2\right)^2\)

b. \(x^2-4y^2=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)

c. \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)

d. \(x^3-3x^2+3x-1\)

\(=x^3-1^3-3x^2+3x\)

\(=\left(x-1\right)\left(x^2-x+1\right)-3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x-1\right)\left(x^2-4x+1\right)\)

e. \(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)

g. \(4x^2+12xy+9y^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=\left(2x+3y\right)^2\)

\(a/\)

\(4x-4y+x^2-2xy+y^2\)

\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)

\(=4\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(4+x-y\right)\)

\(b/\)

\(x^4-4x^3-8x^2+8x\)

\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)

\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)

\(=x\left(x+2\right)\left(x^2-6x-4\right)\)

\(d/\)

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)

\(e/\)(Xem lại đề)

\(x^4+x^3+x^2+2x+1\)

\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^3+x+1\right)\)

\(f/\)

\(x^3-4x^2+4x-1\)

\(=x\left(x^2-4x+4\right)-1^2\)

\(=x\left(x-2\right)^2-1\)

\(=[\sqrt{x}\left(x-2\right)]^2-1\)

\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)

\(c/\)

\(x^3+x^2-4x-4\)

\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+3x+2\right)\)

\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)

\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

a: \(B=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{10}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)

b: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)

\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)

\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)

c: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)

\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=\dfrac{-5}{2}\)

d: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)

\(=\dfrac{1-4x^2}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)

\(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x+4}\cdot\dfrac{3}{2\left(1-2x\right)}=\dfrac{3\left(2x+1\right)}{x+4}\)