Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3x-y=13\) và \(2x-4y=60\)
Mà: \(2\left(x+2y\right)=60\Rightarrow x+2y=30\) (1)
Và: \(3x-y=13\Rightarrow6x-2y=26\) (2)
Cộng (1) với (2) theo vế ta có:
\(\left(x+6x\right)+\left(-2y+2y\right)=30+26\)
\(\Rightarrow7x=56\)
\(\Rightarrow x=8\)
Ta tìm được y:
\(8+2y=30\)
\(\Rightarrow2y=22\)
\(\Rightarrow y=11\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
1 ) \(3x=4y=\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất của dảy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{2x+3y}{2.4+3.3}=\frac{34}{17}=2\)
\(\Rightarrow\begin{cases}\frac{x}{4}=2\Rightarrow x=8\\\frac{y}{3}=2\Rightarrow y=6\end{cases}\)
Vậy \(x=8;y=6\)
2 ) \(4x=5y=\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{2x-3y}{2.5-3.4}=\frac{35}{-2}\)
\(\Rightarrow\begin{cases}\frac{x}{5}=\frac{35}{-2}\Rightarrow x=-\frac{175}{2}\\\frac{x}{4}=\frac{35}{-2}\Rightarrow x=-70\end{cases}\)
Vậy ..............
Bài 1:
3x=4y và 2x+3y=34
\(\Rightarrow\frac{x}{4}=\frac{y}{3}\) và 2x+3y=34
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{2x+3y}{2.4+3.3}=\frac{34}{17}=2\)
- \(\frac{x}{4}=2.4=8\)
- \(\frac{y}{3}=2.3=6\)
Vậy x=8 và y=6
Bài 2:
4x=5y và 2x-3y=35
\(\Rightarrow\frac{x}{5}=\frac{y}{4}\) và 2x-3y=35
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{4}=\frac{2x-3y}{2.5-3.4}=\frac{35}{-2}\)
- \(\frac{x}{5}=\frac{35}{-2}.5=-\frac{175}{2}\)
- \(\frac{y}{4}=\frac{35}{-2}.4=-70\)
Vậy \(x=-\frac{175}{2};y=-70\)
^...^ ^_^
Đề đọc khó hiểu quá. Các ký hiệu thiếu tùm lum không à. Bạn xem lại nhé.