Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e.
\(3\left(1-sin^2x\right)-5sinx-1=0\)
\(\Leftrightarrow-3sin^2x-5sinx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
f.
\(2\left(2cos^2x-1\right)-cosx+7=0\)
\(\Leftrightarrow4cos^2x-cosx+5=0\)
Phương trình vô nghiệm
g.
\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)
\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)
Phương trình vô nghiệm
h.
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x-\frac{1}{2}cos4x=\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\)
\(\Leftrightarrow sin4x.cos\frac{\pi}{6}-cos4x.sin\frac{\pi}{6}=sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{6}\right)=sin\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{6}=x-\frac{\pi}{3}+k2\pi\\4x-\frac{\pi}{6}=\pi-x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
1.
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\) và \(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)
2.
\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)
\(\Leftrightarrow2cos^22x-cos2x=cos2x\)
\(\Leftrightarrow cos^22x-cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)
3.
\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow...\)
4.
\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)
\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)
\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)
\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)
\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)
1d.
Đề ko rõ
1e.
\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)
\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)
\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)
2b.
Đề thiếu
2c.
Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)
\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)
\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)
\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(\text{1) }3sinx-4cosx=1\\ \Leftrightarrow cos^2x+\left(\frac{4cosx+1}{3}\right)^2=1\\ \Leftrightarrow cosx=\frac{-4\pm6\sqrt{6}}{25}\\ \\ \Leftrightarrow x=arccos\left(\frac{-4\pm6\sqrt{6}}{25}\right)+k2\pi\)
\(2\text{) }\sqrt{3}sinx-cosx=1\\ \Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sinx-sin\frac{\pi}{6}\cdot cosx=\frac{1}{2}\\ \Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin\frac{\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+a2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+a2\pi\\x=\pi+b2\pi\end{matrix}\right.\)
\(3\text{) }\sqrt{3}cosx+sinx=-2\\ \Leftrightarrow\frac{\sqrt{3}}{2}cosx+\frac{1}{2}sinx=-1\\ \Leftrightarrow sin\frac{\pi}{3}\cdot cosx+cos\frac{\pi}{3}\cdot sinx=-1\\ \Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=-1=sin\frac{3\pi}{2}\\ \\ \Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{7\pi}{6}+k2\pi\)
\(4\text{) }cos4x-sin4x=1\\ \Leftrightarrow cos^24x+\left(cos4x-1\right)^2=1\\ \\ \Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+a\pi\\4x=b2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{a\pi}{4}\\x=\frac{b\pi}{2}\end{matrix}\right.\)
\(5\text{) }\sqrt{3}cos4x+sin4x-2cos3x=0\\ \Leftrightarrow\frac{\sqrt{3}}{2}cos4x+\frac{1}{2}sin4x=cos3x\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos4x+sin\frac{\pi}{3}\cdot sin4x=cos3x\\ \Leftrightarrow cos\left(4x-\frac{\pi}{3}\right)=cos3x\\ \Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{3}=3x+a2\pi\\4x-\frac{\pi}{3}=-3x+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+a2\pi\\x=\frac{\pi}{21}+\frac{b2\pi}{7}\end{matrix}\right.\\ \Leftrightarrow x=\frac{\pi}{21}+\frac{k2\pi}{7}\)
\(6\text{) }cos^2x=3sin2x+3\\ \Leftrightarrow\frac{cos2x+1}{2}=3sin2x+3\)
Giải tương tự vd 1 và 4
7) Giải tương tự vd 1 và 4