Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\left(1-\frac{3}{4}\right)x\left(1-\frac{3}{7}\right)x\left(1-\frac{3}{10}\right)x\left(1-\frac{1}{13}\right)x...x\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}x\frac{4}{7}x\frac{7}{10}x...x\frac{94}{97}x\frac{97}{100}\)
\(=\frac{1x4x7x...x94x100}{4x7x10x...x97x100}\)
\(=\frac{1}{100}\)
#~Will~be~Pens~#
\(\left(1-\frac{3}{4}\right)\left(1-\frac{3}{7}\right)\left(1-\frac{3}{10}\right)\left(1-\frac{1}{13}\right)...\left(1-\frac{1}{97}\right)\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.\frac{10}{13}...\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1}{100}\)
( 1 - 3/4 ) x ( 1 - 3/7 ) x ( 1 - 3/10 ) x ( 1 - 3/13 ) x ......x ( 1 - 3/97 ) x ( 1 - 3/100 ) .
= 1/4 x 4/7 x 7/10 x ... x 97/100 .
Khử đi các số giống nhau .
= 1/100 nha bạn .
1 − 4 3 1 − 7 3 1 − (10 3 ... 1 − 97 3 1 − 100 3 = 4 1 . 7 4 . 10 7 ..... 97 94 . 100 97 = 4.7.10.....97.100 1.4.7.....94.97 = 100 1
\(\left(1-\frac{3}{4}\right)x\left(1-\frac{3}{7}\right)x\left(1-\frac{3}{10}\right)x\left(1-\frac{3}{13}\right)x...x\left(1-\frac{3}{97}\right)x\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}x\frac{4}{7}x\frac{7}{10}x\frac{10}{13}x...x\frac{94}{97}x\frac{97}{100}\)
\(=\frac{1}{100}\)
\(\left(1-\frac{3}{4}\right)\times\left(1-\frac{3}{7}\right)\times\left(1-\frac{3}{10}\right)...\times\left(1-\frac{3}{97}\right)\times\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}\times\frac{4}{7}\times\frac{7}{10}\times...\times\frac{94}{97}\times\frac{97}{100}\)
\(=\frac{1\times4\times7\times10\times...\times97}{1\times4\times7\times10\times...\times97\times100}\)
\(=\frac{1}{100}\)
`a)(1-1/2)xx(1-1/3)xx(1-1/4)xx(1-1/5)`
`=1/2xx2/3xx3/4xx4/5`
`=[1xx2xx3xx4]/[2xx3xx4xx5]`
`=1/5`
`b)(1-3/4)xx(1-3/7)xx(1-3/10)xx(1-3/13)xx .... xx(1-3/97)xx(1-3/100)`
`=1/4xx4/7xx7/10xx10/13xx .... xx94/97xx97/100`
`=[1xx4xx7xx10xx...xx94xx97]/[4xx7xx10xx13xx....xx97xx100]`
`=1/100`
Giải:
\(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
\(\left(1-\frac{3}{4}\right).\left(1-\frac{3}{7}\right).\left(1-\frac{3}{10}\right).\left(1-\frac{3}{13}\right)...\left(1-\frac{3}{97}\right).\left(1-\frac{3}{100}\right)\)
\(=\frac{1}{4}.\frac{4}{7}.\frac{7}{10}.\frac{10}{13}...\frac{94}{97}.\frac{97}{100}\)
\(=\frac{1.4.7.10...94.97}{4.7.10.13...97.100}=\frac{1}{100}.\)
a)
Số số hạng là \(\left(101-1\right)\div1+1=101\) số hạng
Tổng là \(\left(101+1\right)\times101\div2=5151\)
b)
Số số hạng là \(\left(100-7\right)\div3+1=32\) số hạng
Tổng là \(\left(100+7\right)\times32\div2=1712\)
\(1+2+3+4+5+...+101\)
\(=(101+1)+(100+2)+(99+3)+...\)
\(=(101+1)*\dfrac{(101-1):1+1}{2}\)
\(=102*50.5=5151\)
\(7+10+13+16+19+...+100\)
\(=(100+7)+(97+10)+(94+13)+...\)
\(=(100+7)*\dfrac{(100-7):3+1}{2}\)
\(=107*16=1712\)