Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
1 +( -2) + 3 + (-4) +...+2001 + (-2002) + 2003
= [1 +( -2)] + [3 + (-4)] +...+ [-2000+2001] + [(-2002) + 2003]
= -1 + -1 +............ + 1 + 1
= 0
(Chú ý : số nguyên tố chỉ có ước là 1 và chính nó nên với số có thể phân tích thành tích hai thừa số thì điều kiện cần để số đó là số nguyên tố là 1 trong 2 thừa số bằng 1.)
Ta có: \(n^3-n^2+n-1=\left(n^3-n^2\right)+\left(n-1\right)=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)
Để \(n^3-n^2+n-1\) là số nguyên tố
=> \(\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}\Rightarrow}\orbr{\begin{cases}n=2\\n=0\end{cases}}\)
Thử lại với bài toán đầu xem có phù hợp không
Với n = 2: \(n^3-n^2+n-1=2^3-2^2+2-1=5\)là số nguyên tố nên n = 2 thỏa mãn.
Với n = 0 : \(n^3-n^2+n-1=-1\)không là số nguyên tố.
Vậy n = 2.
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2
1) Có: \(2n+7=2(n+1)+5\)
Mà \(2\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)
Vậy \(n\in\left\{0;4\right\}\) thoả mãn
2) Có: \(n+6=\left(n+2\right)+4\)
Mà \(n+2⋮n+2\Rightarrow4⋮n+2\Rightarrow n+2\inƯ\left\{4\right\}=\left\{1;2;4\right\}\)
\(\Rightarrow+n+2=4\Rightarrow n=2\)
\(+n+2=2\Rightarrow n=0\)
\(+n+2=1\Rightarrow n=-1\)
Vì \(n\inℕ\Rightarrow n\in\left\{2;0\right\}\)
_Thi tốt_
có 2n+1 chia hết cho n+1
=> n+n+1 chia hết cho n+1
=>n+1+n+1-1 chia hết cho n+1
=>2.[n+1] chia hết cho n+1
mà 2.[n+1] chia hết cho n+1
=> -1 chia hết cho n+1
=>n+1 thuộc Ư[-1]
=>n+1 thuộc {1 và -1}
=>n thuộc {0 và -2}
Vậy n thuộc {0 va -2}
12x+3.23=23.x-4.32
12x+3.8=8.x-4.9
12x+24=8x-36
12x-8x=36-24
4x=12
x=12:4=3
a, 1+2+...+n=190
=> \(\frac{n\left(n+1\right)}{2}=190\)
=> n(n+1) = 380
Mà 380 = 19.20
=> n=19
b, 1+2+...+n=741
=>\(\frac{n\left(n+1\right)}{2}=741\)
=> n(n+1) = 1482
Mà 1482 = 38.39
=> n=38
Ta có:
Từ 1 đến n có n số hạng
\(\Rightarrow\) [ ( 1 + n ) . n ) ] : 2 = 190
\(\Rightarrow\) ( 1 + n ) . n = 190 . 2
\(\Rightarrow\) ( 1 + n ) . n = 380
\(\Rightarrow\) ( 1 + n ) . n = 20 . 19
\(\Rightarrow\) n = 19
Vậy n = 19
1 + 2 + 3 + .......... + n = 741
Ta có:
Từ 1 đến n có số số hạng
\(\Rightarrow\)[ ( 1 + n ) . n ] : 2 = 741
\(\Rightarrow\) ( 1 + n ) . n = 741 . 2
\(\Rightarrow\) ( 1 + n ) . n = 1482
\(\Rightarrow\) ( 1 + n ) . n = 39 . 38
\(\Rightarrow\) n = 38
Vậy n = 38