Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Cho A.= \(\frac{7^{2018}+1}{7^{2019}+1}\)Và B=\(\frac{7^{2019}+1}{7^{2019}+1}\)
So sánh A và B
\(A=\frac{7^{2018}+1}{7^{2019}+1}\)
\(\Rightarrow7A=\frac{7^{2019}+7}{7^{2019}+1}=1+\frac{6}{7^{2019}+1}\)
\(B=\frac{7^{2019}+1}{7^{2020}+1}\)
\(\Rightarrow7B=\frac{7^{2020}+7}{7^{2020}+1}\)
\(\Rightarrow7B=1+\frac{6}{7^{2020}+1}\)
Vì 7 ^ 2019 < 7 ^ 2020 => 7 ^ 2019 + 1 < 7 ^ 2020 + 1
=> 6 / ( 7 ^ 2019 + 1 ) > 6 / ( 7 ^ 2020 + 1 )
=> 1 + 6 / ( 7 ^ 2019 + 1 ) > 1 + 6 / ( 7 ^ 2020 + 1 )
=> 7A > 7B
Vì A , B > 0
Nên A > B
Vì \(7^{2018}< 7^{2019}\)nên \(7^{2018}+1< 7^{2019}+1\)
\(\Rightarrow\frac{7^{2018}+1}{7^{2019}+1}< \frac{7^{2019}+1}{7^{2019}+1}\)
Hay A < B
Chúc bạn học tốt ! Nguyễn Thi An Na
\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)
=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)
\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)
=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)
=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)
=>\(A>B\)
cách này mình tự nghĩ
Ta có :
\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)
\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)
\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)
\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)
\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)
=> A chia 19 dư 0
P=(1-1/7)*(1-2/7)*(1-3/7)*......*(1-2019/7)=(1-1/7)*(1-2/7)*(1-3/7)*...*(1 - 7/7)...*(1-2019/7)
=(1-1/7)*(1-2/7)*(1-3/7)*...*0...*(1-2019/7)=0