Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=4x^2+4x+11\)
\(=\left(2x\right)^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Vậy \(A_{min}=10\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)
\(B=x^2-20x+101=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\)
Vậy \(B_{min}=1\Leftrightarrow x-10=0\Leftrightarrow x=10\)
Ta có
A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2
=>MIN A=2 khi và chỉ khi x-3=0 hay x=3
B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1
=>MIN B=1 khi và chỉ khi x-10=0 hay x=10
VD câu a thôi hơi dài đấy
\(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)( biến đổi về dạng hằng đẳng thức )
\(A=\left(x-3\right)^2+2\)
Mà ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge2\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy,..........
\(B=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1\ge1\)
B min = 1\(\Leftrightarrow x=10\)
a ) A = 4x2 + 4x + 11
= 4x2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R
=> ( 2x + 1 )2 + 10 > 10
=> A > 10
=> Giá trị nhỏ nhất của A là 10
Dấu = xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)
b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x + 3 )
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
Đặt t = x2 + 5x
=> B = ( t - 6 ) ( t + 6 )
= t2 - 36
Nhận xét :
t2 > 0 với mọi t thuộc R
=> t2 - 36 > - 36
=> B > - 36
=> Giá trị nhỏ nhất của B là - 36
Dấu = xảy ra khi : t2 = 0
=> t = 0
mà t = x2 + 5x
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)
c ) C = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x thuộc R
( y - 2 )2 > 0 với mọi y thuộc R
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> C > 2
=> Giá trị nhỏ nhất của C là 2
Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2
\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)
= \(\left(2x-6\right)^2-25>=-25\)
A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)
<=> \(x=3\)
các câu còn lại tương tự
TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC
\(a,A=4x^2-12x+11\)
\(A=4x^2-12x+9+2\)
\(A=\left(2x-3\right)^2+2\)
Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)
\(b,B=x^2-x+1\)
\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(c,C=-x^2+6x-15\)
\(C=-\left(x^2-6x+15\right)\)
\(C=-\left(x^2-6x+4+11\right)\)
\(C=-\left[\left(x-2\right)^2+11\right]\)
\(C=-\left(x-2\right)^2-11\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(maxC=-11\Leftrightarrow x=2\)
\(d,D=\left(x-3\right)\left(1-x\right)-2\)
\(D=x-x^2-3+3x-2\)
\(D=-x^2+4x-5\)
\(D=-\left(x^2-4x+5\right)\)
\(D=-\left(x^2-4x+4+1\right)\)
\(D=-\left[\left(x-2\right)^2+1\right]\)
\(D=-\left(x-2\right)^2-1\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(maxD=-1\Leftrightarrow x=2\)
bai 1
A=x2-6x+11
=x2-2.3x+9+2
=(x2-6x+9)+2
=(x-3)2 +2
do (x-3)2 ≥0 ∀x
=>(x-3)2+2≥2
=>A≥2
=>GTNN A=2 khi
x-3=0
=>x=3
2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4
Ta luôn có: (x - 3)2 \(\ge\)0 \(\forall\)x
=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy MinA = -4 tại x = 3
Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3
Ta luôn có: 4(x - 1)2 \(\ge\)0 \(\forall\)x
=> 4(x - 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
vậy MinB = 3 tại x = 1
Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8
Ta luôn có: 2(x + 1)2 \(\ge\)0 \(\forall\)x
=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinC = -8 tại x = -1
1/
\(A=x^2-6x+5\)
\(A=x^2-2\cdot3x+3^2-3^2+5\)
\(A=\left(x-3\right)^2-3^2+5\)
\(A=\left(x-3\right)^2-9+5\)
\(A=\left(x-3\right)^2-4\)
mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)
\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)
với \(\left(x-3\right)^2=0;x=3\)
\(B=4x^2-8x+7\)
\(B=4\left(x^2-2x+\frac{7}{4}\right)\)
\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)
\(B=4\left(x-1\right)^2+3\)
\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)
\(\Rightarrow GTNNB=3\)
với \(\left(x-1\right)^2=0;x=1\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x-3\right)\)
\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)
\(C=\left(x+1\right)^2-8\)
có\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)
\(\Rightarrow GTNNC=-8\)
với \(\left(x+1\right)^2=0;x=-1\)
1. Câu hỏi của Quỳnh Như - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu 1 tại link này.
Em cảm ơn cô nhiều