K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Câu hỏi của Cỏ Bốn Lá - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

8 tháng 12 2018

ABCHMNPO

S ABC = \(\frac{1}{2}\)AH.BC=\(\frac{1}{2}\)AB.AC

suy ra : AH.BC=AB.AC 

b) Tứ giác ANMP có   \(\widehat{A}\)=\(\widehat{N}\)=\(\widehat{M}\)=90\(^0\)nên tứ giác ANMP là hình chữ nhật .

c)  Gọi O là giao điểm hai đường chéo AM và NP của hình chữ nhật ANMP do đó O là trung điểm của đoạn AM và NP 

tam giác  AHM vuông tại H có HO là đường trung tuyến ứng với cạnh huyền AM nên HO =\(\frac{1}{2}\) AM = \(\frac{1}{2}\)NP (vì AM = NP ,hai đường chéo của hình chữ nhật ANMP )

 Xét tam giác NHP có đường trung tuyến HO= \(\frac{1}{2}\)NP  ,suy ra tam giác NHP vuông tại H 

 Vậy \(\widehat{NHP}\)= 90\(^0\)

d) Ta có :  NP = AM ( Tính chất đường chéo hình chữ nhật )

 NP nhỏ nhất khi AM nhỏ nhất 

 AM nhỏ nhất khi  M trùng với H . Vậy NP nhỏ nhất khi M trung với H.

13 tháng 12 2016

1,de dang chung minh duoc la hinh chu nhat

2/ gọi o là giao điểm của am va np

vi tam giac vuong ahm co oh la duong trung tuyen nen oh=am/2

ma np=am nen oh cung bang np/2

do do tam giac nhp vuong tai h

3.np ngan nhat <=>am ngan nhat

<=>am la duong cao

<=>m trùng với h

<=> m là giao điểm của đường cao kẻ từ a với bc

câu 1: cho tam giác abc vuông tại a . kẻ đường cao ah . gọi de là hình chiếu của h trên ab, ac và m , n theo thứ tự là tđ của các đoạn thẳng bh , cha)ah=deb)mden là hình thang vuôngc)gọi p là giao đường thẳng de với đường cao ah và q là tđ của đoạn thẳng mn . cm pq vuông ded) p là trực tâm tam giác abncâu 2:cho tam giác abc vuông tại a , đường cao ah . kẻ he vuông ab , hf vuông aca)ef=ahb) m , n lần lượt...
Đọc tiếp

câu 1: cho tam giác abc vuông tại a . kẻ đường cao ah . gọi de là hình chiếu của h trên ab, ac và m , n theo thứ tự là tđ của các đoạn thẳng bh , ch

a)ah=de

b)mden là hình thang vuông

c)gọi p là giao đường thẳng de với đường cao ah và q là tđ của đoạn thẳng mn . cm pq vuông de

d) p là trực tâm tam giác abn

câu 2:cho tam giác abc vuông tại a , đường cao ah . kẻ he vuông ab , hf vuông ac

a)ef=ah

b) m , n lần lượt là tđ hb , hc . cm Smefn=\(\frac{1}{2}\)Sabc

c) mnfe là hình gì ?

câu 3: cho tam giác abc vuông tại a , ab=6cm , ac=8cm ,đường cao ah. kẻ he vuông ab , hf vuông ac

a)ef=ah

b) tính ah

c)m , n theo thứ tự là tđ của các đoạn thẳng hb , hc. mnfe là hình gì ?

bài 4:cho tam giác abc vuông tại a, đường cao ah. gọi m là điểm nằm giữa b và c . kẻ mn vuông ab, mp vuông ac

a) cm ah.bc=ab.ac

b)anmp là hình gì ?

c)tính số đo góc nhp

d)tìm vị trí điểm m trên bc để np có độ dài ngắn nhất

bài5:cho tam giác abc vuông tại a, đường cao ah. d là tđ ac, e đối xứng với h qua d

a) ahce là hình chữ nhật

b)kẻ ai // he(i thuộc bc).cm aehi là hbh
c)trên tia đối ha lấy k sao cho ha=hk.cm caik là hình thoi

d) tam giác abc cần đk gì để caik là hình vuông ? khi đó ahce là hình gì ?

 

 

0
26 tháng 2 2018

a) Ta có ngay AH.BC = AB.AC \(\left(=\frac{1}{2}S_{ABC}\right)\)

b) Xét tứ giác NMPA có 3 góc vuông nên NMPA là hình chữ nhật.

c) Ta có ngay \(\Delta MPC\sim\Delta AHC\left(g-g\right)\Rightarrow\frac{MP}{AH}=\frac{PC}{HC}\Rightarrow\frac{NA}{PC}=\frac{AH}{HC}\)

Lại có \(\widehat{NAH}=\widehat{PCM}\)  (Cùng phụ với góc HAC)

\(\Rightarrow\Delta NAH\sim\Delta PCH\left(c-g-c\right)\Rightarrow\widehat{NHA}=\widehat{PHC}\)

Vậy nên \(\widehat{NHP}=\widehat{NHA}+\widehat{AHP}=\widehat{PHC}+\widehat{AHP}=\widehat{AHC}=90^o\)

d) Dp ANMP là hình chữ nhật nên NP = AM

Lại có AM là đường xiên nên \(AM\ge AH\Rightarrow NP\ge AH\)

Vậy NP ngắn nhất khi M trùng H.

9 tháng 12 2018

mình không biết

2 tháng 5 2020

c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A

=> \(\Delta ABC\)vuông tại A

Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A

2 tháng 5 2020

d) Để tứ giác ANMP là hình vuông thì:

     + Tứ giác ANMP phải là hình thoi

     + Tứ giác ANMP có 1 góc vuông

(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)

Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)

Hok tốt ~