Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,de dang chung minh duoc la hinh chu nhat
2/ gọi o là giao điểm của am va np
vi tam giac vuong ahm co oh la duong trung tuyen nen oh=am/2
ma np=am nen oh cung bang np/2
do do tam giac nhp vuong tai h
3.np ngan nhat <=>am ngan nhat
<=>am la duong cao
<=>m trùng với h
<=> m là giao điểm của đường cao kẻ từ a với bc
a) Ta có ngay AH.BC = AB.AC \(\left(=\frac{1}{2}S_{ABC}\right)\)
b) Xét tứ giác NMPA có 3 góc vuông nên NMPA là hình chữ nhật.
c) Ta có ngay \(\Delta MPC\sim\Delta AHC\left(g-g\right)\Rightarrow\frac{MP}{AH}=\frac{PC}{HC}\Rightarrow\frac{NA}{PC}=\frac{AH}{HC}\)
Lại có \(\widehat{NAH}=\widehat{PCM}\) (Cùng phụ với góc HAC)
\(\Rightarrow\Delta NAH\sim\Delta PCH\left(c-g-c\right)\Rightarrow\widehat{NHA}=\widehat{PHC}\)
Vậy nên \(\widehat{NHP}=\widehat{NHA}+\widehat{AHP}=\widehat{PHC}+\widehat{AHP}=\widehat{AHC}=90^o\)
d) Dp ANMP là hình chữ nhật nên NP = AM
Lại có AM là đường xiên nên \(AM\ge AH\Rightarrow NP\ge AH\)
Vậy NP ngắn nhất khi M trùng H.
c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A
=> \(\Delta ABC\)vuông tại A
Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A
d) Để tứ giác ANMP là hình vuông thì:
+ Tứ giác ANMP phải là hình thoi
+ Tứ giác ANMP có 1 góc vuông
(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)
Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)
Hok tốt ~
Câu hỏi của Cỏ Bốn Lá - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
ABCHMNPO
S ABC = \(\frac{1}{2}\)AH.BC=\(\frac{1}{2}\)AB.AC
suy ra : AH.BC=AB.AC
b) Tứ giác ANMP có \(\widehat{A}\)=\(\widehat{N}\)=\(\widehat{M}\)=90\(^0\)nên tứ giác ANMP là hình chữ nhật .
c) Gọi O là giao điểm hai đường chéo AM và NP của hình chữ nhật ANMP do đó O là trung điểm của đoạn AM và NP
tam giác AHM vuông tại H có HO là đường trung tuyến ứng với cạnh huyền AM nên HO =\(\frac{1}{2}\) AM = \(\frac{1}{2}\)NP (vì AM = NP ,hai đường chéo của hình chữ nhật ANMP )
Xét tam giác NHP có đường trung tuyến HO= \(\frac{1}{2}\)NP ,suy ra tam giác NHP vuông tại H
Vậy \(\widehat{NHP}\)= 90\(^0\)
d) Ta có : NP = AM ( Tính chất đường chéo hình chữ nhật )
NP nhỏ nhất khi AM nhỏ nhất
AM nhỏ nhất khi M trùng với H . Vậy NP nhỏ nhất khi M trung với H.