K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 9 2021

\(x^2+10x+y^2-2y+26+\left(3z-6\right)^2=0\)

\(\Leftrightarrow x^2+10x+25+y^2-2y+1+\left(3z-6\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2+\left(y-1\right)^2+\left(3z-6\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y-1=0\\3z-6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=1\\z=2\end{cases}}\)

31 tháng 10 2019

\(x^2+10x+26+y^2+2y=0\)

\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

Vậy \(x=-5\)và \(y=-1\)

31 tháng 10 2019

\(x^2+10x+26+y^2+2y=0\)

\(\Leftrightarrow x^2+10x+25+y^2+2y+1=0\)

\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)

Vậy..............

NV
10 tháng 1 2021

\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)

\(\Rightarrow P\ge x+2y+3z-3\)

\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)

\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

21 tháng 8 2021

Ta có: \(\left\{{}\begin{matrix}x\left(x+2y+3z\right)=-5\\y\left(x+2y+3z\right)=27\\z\left(x+2y+3z\right)=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-5}=x+2y+3z\\\dfrac{y}{27}=x+2y+3z\\\dfrac{z}{5}=x+2y+3z\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{-5}=\dfrac{y}{27}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-27}{5}x\\z=-x\end{matrix}\right.\)

Ta có: \(x\left(x+2y+3z\right)=-5\Rightarrow x\left(x+2.\dfrac{-27}{5}x-3x\right)=-5\)

\(\Rightarrow\dfrac{-64}{5}x^2=-5\Rightarrow x^2=\dfrac{25}{64}\Rightarrow x=\dfrac{5}{8}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{27}{5}x=-\dfrac{27}{8}\\z=-x=-\dfrac{5}{8}\end{matrix}\right.\)

a: \(x^2+3y^2-4x+6y+7=0\)

\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)

5 tháng 11 2019

Có: \(5x^4+10x^2+2y^6+4y^3-6=0\)

<=> \(5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

<=> \(5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

Vì x, y nguyên => \(\left(x^2+1\right)^2;\left(x^3+1\right)^2\)là số chính phương

=>  \(x^2+1=1\)

và  \(y^3+1=2\)

Khi đó: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)thử lại thỏa mãn.

17 tháng 11 2017

<=> [ (x^2+2xy+y^2)+ 2.(x+y).5 +25 ] + (y^2+2y+1)=0

<=> (x+y+5)^2 + (y+1)^2 = 0

<=> x+y+5 = 0 và y+1 = 0

<=> x=-4 và y=-1

17 tháng 11 2017

Ta có: x2+2y2+2xy+10x+12y+26=0

=> (x2+2xy+y2)+(10x+10y)+25+(y2+2y+1)=0

=> (x+y)2+10(x+y)+25+(y2+2y+1)=0

=> (x+y+5)2+(y+1)2=0

=> (x+y+5)2=(y+1)2=0

=> x+y+5=y+1=0

(+) y+1=0=> y=-1

(+) x+y+5=0 mà y=-1=> x-1+5=0

=> x+4=0=> x=-4

Vậy (x,y)=(-4;-1)