Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(x^3-25x-\left(x^3+8\right)=17\)
\(x^3-25x-x^3-8=17\)
\(-25x=25\)
\(x=-1\)
c. \(6x^2-\left(6x^2-4x+15x-10\right)=7\)
\(6x^2-6x^2-11x+10=7\)
\(-11x=-3\)
\(x=\frac{3}{11}\)
a/ \(\left(x+2\right)^2-9=0\)
<=> \(\left(x+2-3\right)\left(x+2+3\right)=0\)
<=> \(\left(x-1\right)\left(x+5\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
b/ \(x^2-2x+1=25\)
<=> \(\left(x-1\right)^2=25\)
<=> \(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
I don't now
sorry
...................
nha
b) \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)
Đặt: \(3x+3=a\)pt trở thành:
\(\left(a-5\right)a^2\left(a+5\right)+144=0\)
\(\Leftrightarrow\)\(a^4-25a^2+144=0\)
\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)
đến đây bạn tìm a rồi tính x
c) \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)
Đặt \(4x-5=a\)pt trở thành:
\(a\left(a-1\right)\left(a+1\right)-72=0\)
\(\Leftrightarrow\)\(a^3-a-72=0\)
p/s: ktra lại đề
d) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)
đến đây làm nốt
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
2.
a) \(x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(\Rightarrow x^3+x^2+x-x^3-x^2-x+5\)
\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)
\(=5\)( vì kết quả bằng 5 nên đa thức không phụ thuộc vào biến )
b) \(x.\left(2x+1\right)-x^2.\left(x+2\right)+x^3-x+3\)
\(\Rightarrow2x^2+x-x^3-2x^2+x^3-x+3\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)
\(=3\)( vì kết quả bằng 3 nên đa thức không phụ thuộc vào biến )
c) \(4.\left(6+x\right)+x^2.\left(2+3x\right)-x.\left(5x+4\right)+3x^2.\left(1-x\right)\)
\(\Rightarrow24+4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)
\(\Rightarrow24+\left(4x-4x\right)+\left(2x^2-5x^2+3x^2\right)+\left(3x^3-3x^3\right)\)
\(=24\)( vì kết quả bằng 24 nên đa thức không phụ thuộc vào biến )
a) ( 3x - 1 ) ( 2x + 7 ) - ( x + 1 ) ( 6x + 5 ) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 + x - 5 ) = 16
<=> 6x2+ 21x - 2x - 7 - 6x2 -x + 5 = 16
<=> 18x - 2 = 16
<=> 18x = 18
=> x = 1
Vậy....
1)
a) \(x^3-5x^2+x-5=0\Rightarrow x^2.\left(x-5\right)+\left(x-5\right)\)
\(\Rightarrow\left(x^2+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(sai\right)\\x=5\end{cases}}\)\(KL:x=5\)
b) \(x^4-2x^3+10x^2-20x=0\Rightarrow x^3.\left(x-2\right)+10x\left(x-2\right)\)
\(\Rightarrow\left(x-2\right).\left(x^3+10x\right)\Rightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\Rightarrow x=0\end{cases}}\)
Vì nếu x2 + 10 = 0 => x2 = -10 ( sai )
Vậy...
\(a,\Leftrightarrow x^2-4x-x^2+5x=5\Leftrightarrow x=5\\ b,\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)