K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

a: Để A nguyên thì \(2x-3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{2;1;5;-2\right\}\)

27 tháng 12 2021

còn các câu còn lại thì sao ak

 

2 tháng 12 2018

a) Để \(C=\frac{3x+2}{x+1}=\frac{3x+3-1}{x+1}=\frac{3.\left(x+1\right)-1}{x+1}=3-\frac{1}{x+1}\)nguyên

=> 1/x+1 nguyên

=> 1 chia hết cho x + 1

=>...

bn tự làm tiếp nha

b) Để \(D=\frac{2x-1}{x-1}=\frac{2x-2+1}{x-1}=\frac{2.\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)nguyên

=>...

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

a) Ta có: \(A=7x\left(x-5\right)+3\left(x-2\right)\)

\(=7x^2-35x+3x-6\)

\(=7x^2-32x-6\)

Thay x=0 vào biểu thức \(A=7x^2-32x-6\), ta được:

\(7\cdot0^2-32\cdot0-6\)

\(=-6\)

Vậy: -6 là giá trị của biểu thức \(A=7x\left(x-5\right)+3\left(x-2\right)\) tại x=0

b) Ta có: \(B=4x\left(2x-3\right)-5x\left(x-2\right)\)

\(=8x^2-12x-5x^2+10x\)

\(=3x^2-2x\)

Thay x=2 vào biểu thức \(B=3x^2-2x\), ta được:

\(3\cdot2^2-2\cdot2=3\cdot4-4=12-4=8\)

Vậy: 8 là giá trị của biểu thức \(B=4x\left(2x-3\right)-5x\left(x-2\right)\) tại x=2

c) Ta có: \(C=a^2\left(a+b\right)-b^2\left(a^2-b^2\right)\)

\(=a^3+a^2b-b^2a^2+b^4\)

Thay a=1 và b=1 vào biểu thức \(C=a^3+a^2b-b^2a^2+b^4\), ta được:

\(1^3+1^2\cdot1-1^2\cdot1^2+1^4\)

=1+1-1+1

=2

Vậy: 2 là giá trị của biểu thức \(C=a^2\left(a+b\right)-b^2\left(a^2-b^2\right)\) tại a=1 và b=1

d) Ta có: \(D=m\left(m-n+1\right)-n\left(n+1-m\right)\)

\(=m^2-mn+m-n^2-n+mn\)

\(=m^2-n^2+m-n\)

Thay \(m=-\frac{2}{3}\)\(n=-\frac{1}{3}\) vào biểu thức \(D=m^2-n^2+m-n\), ta được:

\(\left(-\frac{2}{3}\right)^2-\left(\frac{-1}{3}\right)^2+\frac{-2}{3}-\frac{-1}{3}\)

\(=\frac{4}{9}-\frac{1}{9}-\frac{1}{3}\)

\(=\frac{1}{3}-\frac{1}{3}=0\)

Vậy: 0 là giá trị của biểu thức \(D=m\left(m-n+1\right)-n\left(n+1-m\right)\) tại \(m=-\frac{2}{3}\)\(n=-\frac{1}{3}\)

19 tháng 4 2020

Bài 1:

Mình sửa lại đề 1 chút:  \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)

Số hạng trong dãy là: (101-1):2+1=51

P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101

Vì (-1)2n+1=-1 với n thuộc Z

=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)

=> P(-1)=-51

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

25 tháng 11 2021

giúp mình gấp với ạ

25 tháng 11 2021

\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)