Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(x,y\inℤ\Rightarrow\hept{\begin{cases}x+2\inℤ\\y-1\inℤ\end{cases}}\)
\(\Rightarrow x+2,y-1\)là các cặp ước của 3.
Ta có bảng sau :
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
y-1 | 3 | -3 | 1 | -1 |
y | 4 | -2 | 2 | 0 |
Đánh giá | Chọn | Chọn | Chọn | Chọn |
Vậy : \(\left(x,y\right)\in\left\{\left(-1,4\right);\left(-3,-2\right);\left(1,2\right);\left(-5,0\right)\right\}\)
a) ( x + 2 ) ( y - 1 ) = 3
Mà x,y Z
=>( x + 2 ) và ( y - 1 ) Ư(3)={±1;±3}
Ta có bảng
x+2 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | -1 | -3 | 1 | -5 |
y | 4 | -2 | 2 | 0 |
Vậy (x,y) thuộc {(-1;4);(-3;-2);(1;2);(-5;0)}
b) ( 3 -x ) ( xy + 5 ) = -1
Vì x,y thuộc Z
=>( 3 -x ) và ( xy + 5 ) thuộc Ư(-1)={ ±1}
Ta có bảng
3-x | 1 | -1 |
xy+5 | -1 | 1 |
x | 2 | 4 |
y | -3 | -1 |
Vậy x,y thuộc {(2;-3);(4;-1)}
\(a)\)
\(\left(x+3\right)\left(y+1\right)=3=1.3=\left(-1\right).\left(-3\right)\)
Ta có bảng sau:
\(x+3\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(y+1\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) | \(0\) | \(-6\) |
\(y\) | \(2\) | \(-4\) | \(0\) | \(-2\) |
Vậy ...
\(b)\)
\(\left(x-1\right)\left(xy+1\right)=2=1.2=\left(-1\right).\left(-2\right)\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(xy+1\) | \(2\) | \(-1\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
\(y\) | \(\frac{1}{2}\) | Loại | \(0\) | \(2\) |
Vậy ...
\(c)\)
\(xy-2=5\)
\(\Leftrightarrow x\left(y-2\right)=5=1.5=\left(-1\right).\left(-5\right)\)
Ta có bảng sau:
\(x\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-2\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(y\) | \(7\) | \(-3\) | \(3\) | \(1\) |
Vậy ...
\(\left(x+2\right)\left(y-1\right)=3\)
Vì x,y nguyên => x+2; y-1 nguyên
=> x+2; y-1 \(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
x+2 | -3 | -1 | 1 | 3 |
y-1 | -1 | -3 | 3 | 1 |
x | -5 | -3 | -1 | 1 |
y | 0 | -2 | 4 | 2 |
a) \(\left(x+2\right)\left(y-1\right)=3\)
Do đó \(\left(\left[x+2\right],\left[y-1\right]\right)\)là các hoán vị của \(\left(\pm1;\pm3\right)\)
Xét TH ([x+2],[y-1])=(1,3)
x+2 = 1 => x= -1
y-1 = 3 => y = 4
Tương tự với các TH còn lại nhé bạn,phương pháp là bạn phân tích thừa số nguyên tố ra rồi tính
a) Vì (x-3).(2y+1)=7
=> x-3 và 2y+1 ∈ Ư(7)={ +-1; +-7 }
Ta có bảng sau:
x-3 | -1 | -7 | 1 | 7 | ||||
2y+1 | -7 | -1 | 7 | 1 | ||||
x | 2(tm) | -4(tm) | 4(tm) | 10(tm) | ||||
y | -4(tm) | -2(tm) | 3(tm) | 0(tm) |