Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải của bạn Thái và Hà chưa hợp lý, còn lời giải của bạn An hợp lý, vì :
- Hai bạn Thái và Hà phân tích đa thức thành nhân tử chưa triệt để, vì ở lời giải của hai bạn, có nhân tử vẫn phân tích được tiếp.
- Còn ở bạn An thì phân tích đã hợp lý, vì trong các nhân tử, không có nhân tử nào phân tích được tiếp.
1)We have: \(a-b=8\)
\(\Rightarrow\left(a-b\right)^2=64\)
\(\Rightarrow a^2-2ab+b^2=64\)
\(\Rightarrow a^2+2ab+b^2-4ab=64\)
\(\Rightarrow\left(a+b\right)^2=64+4ab=64+4\cdot10=64+40=104\)
Hence: \(\left(a+b\right)^2=104\)
2)We have: \(a+b=8\)
\(\Rightarrow\left(a+b\right)^2=64\)
\(\Rightarrow a^2+2ab+b^2=64\)
\(\Rightarrow a^2-2ab+b^2+4ab=64\)
\(\Rightarrow\left(a-b\right)^2=64-4ab=64-4\cdot10=64-40=24\)
Hence \(\left(a-b\right)^2=24\)
dài lắm nên mình làm tắt
1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7
<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7
<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25
<=> -4x + 34 = -5x - 25
<=> x + 34 = -25
<=> x = -25 - 34
<=> x = - 59
2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x
<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x
<=> -x^2 - 3x - 8 = -x^2 - 2x + 9
<=> -3x - 8 = -2x + 9
<=> -x - 8 = 9
<=> -x = 9 + 8
<=> x = -17
3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2
<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2
<=> 2x^2 + 5x + 9 = 2x^2 - 8
<=> 5x + 9 = -8
<=> 5x = -8 - 9
<=> 5x = -17
<=> x = -17/5
4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3
<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3
<=> 12x - 33 = -7x + 3
<=> 19x - 33 = 3
<=> 19x = 3 + 33
<=> 19x = 36
<=> x = 36/19
5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)
<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72
<=> -16x + 64 = -72
<=> -16x = -72 - 64
<=> -16x = -136
<=> x = 136/16 = 17/2
6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3
<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3
<=> -x - 43 = 7x + 12
<=> -8x - 43 = 12
<=> -8x = 12 + 43
<=> -8x = 55
<=> x = -55/8
7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)
<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x
<=> 3x^2 - 12x + 11 = 3x^2 - x
<=> -12x + 11 = -x
<=> 11 = -x + 12x
<=> 11 = 11x
<=> x = 1
8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)
<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x
<=> -52 - x^3 = 5 - x^3 + 2x
<=> -52 = 5x + 2x
<=> -5x - 2x = 52
<=> -7x = 52
<=> x = -52/7
9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)
<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x
<=> 6x + 28 = 5 + 3x
<=> 6x + 28 - 3x = 5
<=> 3x + 28 = 5
<=> 3x = 5 - 28
<=> 3x = -23
<=> x = -23/3
10) (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)
<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7
<=> -53 - 4x = 6x - 17
<=> -4x = 6x + 36
<=> -4x - 6x = 36
<=> -10x = 36
<=> x = -36/10 = -18/5
a) Điều kiện xác định của \(P\) là:
\(\left(x+1\right)\left(2x-6\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) (\(x\ne-1,x\ne3\))
\(=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)
\(P=1\Rightarrow\dfrac{3x}{2\left(x-3\right)}=1\Rightarrow3x=2\left(x-3\right)\Leftrightarrow x=-6\) (thỏa mãn)
c) \(P>0\Rightarrow\dfrac{3x}{2\left(x-3\right)}>0\Leftrightarrow\dfrac{x}{x-3}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)
Kết hợp với điều kiện xác định ta được để \(P>0\) thì \(x>3\) hoặc \(x< 0,x\ne-1\).