Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình.
a, \(xy\) cách \(\left(O\right)\) một khoảng \(OK=a\)
Mà \(OK< R\)
=> \(K\in xy\) và \(xy\) cắt \(\left(O\right)\) tại hai điểm D và E
b, \(OK\perp xy\) đồng thời \(OK\perp AK\) => \(\widehat{AKO}=90^o\) => K thuộc đường tròn đường kính AO (1)
AC, AB là 2 tiếp tuyến => \(\hept{\begin{cases}AC\perp CO\\AB\perp BO\end{cases}}\)=> \(\hept{\begin{cases}\widehat{ACO}=90^o\\\widehat{ABO}=90^o\end{cases}}\)
=> B, C thuộc đường kính BC (2)
(1); (2) => K, B, C thuộc đường kính BC
Hay O, A, B, C, K cùng thuộc đường kính BC
c, \(AK\perp KO\)
=> \(\widehat{AKS}=90^o\)
=> K thuộc đường tròn đường kính AS (3)
=> \(AO\perp BC\) tại M
=> \(\widehat{AMS}=90^o\)
=> M thuộc đường tròn đường kính AS (4)
(3); (4) => AMKS nội tiếp
Lời giải:
a. Vì $AM$ là đường kính nên $\widehat{ABM}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow BM\perp AB$
Mà $CH\perp AB$ nên $BM\parallel CH(1)$
Tương tự: $\widehat{ACM}=90^0$ nên $AC\perp CM$
Mà $AC\perp BH$ nên $CM\parallel BH(2)$
Từ $(1); (2)$ suy ra $BHCM$ là hbh (tứ giác có 2 cặp cạnh đối song song)
b.
$\widehat{BAN}=90^0-\widehat{ABD}=90^0-\widehat{ABC}$
$=90^0-\widehat{AMC}$ (góc nt cùng chắn cung AC)
$=\widehat{MAC}$ (đpcm)
Vì $\widehat{BAN}=\widehat{MAC}$
$\Rightarrow \widehat{BAN}+\widehat{NAM}=\widehat{MAC}+\widehat{NAM}$
$\Leftrightarrow \widehat{BAM}=\widehat{CAN}$
$\Leftrightarrow \frac{1}{2}\text{sđc(BM)}=\frac{1}{2}\text{sđc(CN)}$
$\Leftrightarrow \widehat{BCM}=\widehat{CBN}(*)$
Lại có:
$\widehat{ANM}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow AN\perp MN$
Mà $AN\perp BC\Rightarrow MN\parallel BC$
$\Rightarrow BNMC$ là hình thang $(**)$
Từ $(*); (**)$ suy ra $BNMC$ là htc.