Một nhà máy tuyển thêm công nhân vào làm việc trong thời hạn ba năm và đưa ra hai phương...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Theo phương án 1, tiền lương mỗi quý tạo thành cấp số nhân với

\({u_1} = 5 \times  3 = 15\), công sai \(d = 0,5 \times 3 = 1,5\)

Công thức tổng quát \({u_n} = 15 + 1,5\left( {n - 1} \right)\)

Sau 3 năm làm việc \(\left( {n = 12} \right)\), lương của người nông dân là:

\(\frac{{12}}{2}\left[ {2 \times 15 + \left( {12 - 1} \right) \times 1,5} \right] = 279\) (triệu đồng)

Theo phương án 2, tiền lương mỗi quý sẽ tạo thành cấp số nhân với

\({u_1} = 5 \times 3 = 15\), công bội \(q = 1,05\)

Công thức tổng quát \({u_n} = 15 \times 1,{05^{n - 1}}\)

Sau 3 năm làm việc \(\left( {n = 12} \right),\) lương của người nông dân là:

\(\frac{{15\left( {1 - 1,{{05}^{12}}} \right)}}{{1 - 1,05}} = 238,757\) (triệu đồng)

Vậy thì theo phương án 1 thì tổng lương nhận được của người nông dân cao hơn.

7 tháng 11 2023

Sau 5 năm lương tăng số lần:

5 x 3 = 15 (lần)

Tổng lương sau 5 năm:

15 x 500 000 + 4 000 000 = 11 500 000 (đồng)

Đ.số:...

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Số tiền lương anh Nam nhận được sau 10 lập thành cấp số cộng với:

 Số hạng đầu \({u_1} = 100\) và công sai \(d = 20\)

Tổng lương anh Nam nhận được sau 10 năm là:

\({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{10}}{2}\left[ {2.100 + \left( {10 - 1} \right).20} \right] = 1900\) (triệu đồng)

AH
Akai Haruma
Giáo viên
10 tháng 10 2023

Lời giải:
Sau 10 năm đi làm ~ 120 tháng ~ 20 lần tăng lương.

Lương sau 10 năm là:

$6(1+5\text{%})^20=15,92$ (triệu đồng)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Số hạng tổng quát: \({s_n} = 200 + 25(n - 1)\).     

Lương của anh Thanh vào năm thứ 5 làm việc cho công ty là :

\({s_5} = 200 + 25(5 - 1) = 300\) (triệu đồng)

b) Ta có:

 \(\begin{array}{l}{s_{n + 1}} = 200 + 25(n + 1 - 1) = 200 + 25n\\{s_{n + 1}} - {s_n} = 200 + 25n - \left[ {200 + 25(n - 1)} \right] = 25 > 0\\ \Rightarrow {s_{n + 1}} > {s_n}\end{array}\)

\( \Rightarrow \) \(\left( {{s_n}} \right)\) là dãy số tăng.

Vậy \(\left( {{s_n}} \right)\) là dãy số tăng.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

+ Công thức tính lương của phương án thứ nhất: \({S_n} = 120 + \left( {n - 1} \right).18\)

+ Công thức tính lương của phương án thứ hai: \({Q_n} = 24 + \left( {n - 1} \right).1,8\)

a)    Sau ba năm:

-        Phương án thứ nhất có: \({S_3} = 120 + \left( {3 - 1} \right).18 = 156\) (triệu đồng)

-        Phương án thứ hai có: \({Q_{12}} = 24 + (12 - 1).1,8 = 43,8\) (triệu đồng)

Nếu kí hợp đồng lao động 3 năm, em sẽ chọn phương án thứ nhất

b)    Sau 10 năm:

-        Phương án thứ nhất có: \({S_{10}} = 120 + \left( {10 - 1} \right).18 = 282\) (triệu đồng)

-        Phương án thứ hai có: \({Q_{40}} = 24 + (40 - 1).1,8 = 94,2\) (triệu đồng)

Nếu kí hợp đồng lao động 10 năm, em sẽ chọn phương án thứ nhất.

Tổng số lương của chuyên gia đó sau 10 năm là:

\(S=\dfrac{10\cdot\left[2\cdot240+10\cdot1.05\right]}{2}=2452.5\left(đồng\right)\)

6 tháng 6 2017

Đáp án D

Áp dụng công thức 73 = 50(1+r)8 ta được lãi suất một quý là  r = 73 50 8 - 1 ≈ 0 , 0484 .

Do đó lãi suất một tháng là  r : 3 ≈ 0 , 0161 .