: Hình bình hành ABCD co...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

a, \(\left(y-2\right)\left(y+2\right)\left(y^2+4\right)-\left(y+3\right)\left(y-3\right)\left(y^2+9\right)\)

\(=\left(y^2-4\right)\left(y^2+4\right)-\left(y^2-9\right)\left(y^2+9\right)\)

\(=y^4-16-y^4+81=65\)

b, \(2\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)-2\left(x^6-y^6\right)\)

\(=2\left(x^3-y^3\right)\left(x^3+y^3\right)-2\left(x^6-y^6\right)\)

\(=2\left(x^6-y^6\right)-2\left(x^6-y^6\right)=0\)

28 tháng 8 2021

HOC dot

28 tháng 8 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\) 

\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)

\(\left(x-2y+1\right)^2=x^2+4y^2+1-4xy-4y+2x\)

\(\left(3x+y-2\right)^2=9x^2+y^2+4+6xy-12x-4y\)

15 tháng 7 2021

\(1,E=x^2+y^2+z^2+xy+yz+xz+3\ge\sqrt[6]{x^2.y^2.z^2.xy.yz.xz}+3\ge3\)( cauchy)

dấu "=" xảy ra khi và chỉ khi \(x=y=z=0\)

vậy đẳng thức luôn dương

\(2,a.x^4-2x^3+10x^2-20x=0\)

\(x^2\left(x^2+10\right)-2x\left(x^2+10\right)=0\)

\(\left(x^2-2x\right)\left(x^2+10\right)=0\)

\(\orbr{\begin{cases}x^2-2x=0\\x^2+10=0\end{cases}\orbr{\begin{cases}x\left(x-2\right)=0\\x^2=-10\left(KTM\right)\end{cases}}}\)

\(\orbr{\begin{cases}x=0\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)

\(b,x^2\left(x-1\right)-4x^2+8x-4=0\)

\(x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\)

\(x^2\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2\left(x-1\right)-2\left(x-1\right)^2=0\)

\(\left(x-1\right)\left(x^2-2x+2\right)=0\)

\(\orbr{\begin{cases}x=1\\x^2-2x+2=0\end{cases}\orbr{\begin{cases}x=1\\\left(x-1\right)^2+1=0\end{cases}\orbr{\begin{cases}x=1\left(TM\right)\\\left(x-1\right)^2=-1\left(KTM\right)\end{cases}}}}\)

\(c,x^3+2x+10+5x^2=0\)

\(x^2\left(x+5\right)+2\left(x+5\right)=0\)

\(\left(x^2+2\right)\left(x+5\right)=0\)

\(\orbr{\begin{cases}x^2+2=0\\x+5=0\end{cases}\orbr{\begin{cases}x^2=-2\left(KTM\right)\\x=-5\left(TM\right)\end{cases}}}\)

15 tháng 7 2021

Ta có: E = x2 + y2  + z2 + xy + yz + xz + 3 

=> 2E = 2x2 + 2y2 + 2z2  +2xy + 2yz + 2xz + 6 

2E = (x + y)2 + (Y + z)2 + (x + z)2 + 6 

Do  (x + y)2 \(\ge\)0; (y + z)2 \(\ge\)0; (z + x)2 \(\ge\)0; 6 > 0

=> 2E \(\ge\)6 => E \(\ge\)3 > 0

=> biểu thức E luôn dương với mọi giá trị của biến

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

6 tháng 8 2016

phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3                                                                                chia hết cho 15 là chia hết cho 3 với 5 nha

6 tháng 8 2016

2) a=-(b+c)=> a2=(-(b+c))2

a2-b2-c2=2bc

(a2-b2-c2)2=(2bc)2

a4+b4+c4-2a2b2+2b2c2-2a2c2=4b2c2

a4+b4+c4=2a2b2+2b2c2+2a2c2

2(a4+b4+c4)=(a2+b2+c2)2

Vì a2+b2+c2=14 nên 2(a4+b4+c4)=196

=>a4+b4+c4=98