Cho  ΔGHI  cân  tại  G  (∠G  nhọn), tia phân giác của ∠G cắt HI tại M.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

loading...   a) Do GM là tia phân giác của ∠HGI (gt)

⇒ ∠HGM = ∠IGM

Xét ∆GHM và ∆GIM có:

GH = GI (do ∆GHI cân tại G)

∠HGM = ∠IGM (cmt)

GM là cạnh chung

⇒ ∆GHM = ∆GIM (c-g-c)

b) Do ∆GHM = ∆GIM (cmt)

⇒ HM = IM (hai cạnh tương ứng)

Do ∆GHM = ∆GIM (cmt)

⇒ ∠GMH = ∠GMI (hai góc tương ứng)

Mà ∠GMH + ∠GMI = 180⁰ (kề bù)

⇒ ∠GMH = ∠GMI = 180⁰ : 2 = 90⁰

⇒ GM ⊥ HI

c) Do ∠HGM = ∠IGM (cmt)

⇒ ∠PGM = ∠QGM

Xét hai tam giác vuông: ∆GMP và ∆GMQ có:

GM là cạnh chung

∠PGM = ∠QGM (cmt)

⇒ ∆GMP = ∆GMQ (cạnh huyền góc nhọn)

⇒ MP = MQ (hai cạnh tương ứng)

⇒ ∆MPQ cân tại M

a: Xét ΔGHM và ΔGIM có

GH=GI

\(\widehat{HGM}=\widehat{IGM}\)

GM chung

Do đó: ΔGHM=ΔGIM

b: Ta có: ΔGHM=ΔGIM

nên MH=MI

Ta có: ΔGHI cân tai G

mà GM là đường trung tuyến

nên GM là đường cao

c: Xét ΔGPM vuông tại P và ΔGQM vuông tại Q có

GM chung

\(\widehat{PGM}=\widehat{QGM}\)

Do đó: ΔGPM=ΔGQM

Suy ra: MP=MQ

hay ΔMPQ cân tại M

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

21 tháng 2 2017

E D C B H K x M N A

a) Xét \(\Delta BEA\)\(\Delta DCA\) có:

AE = AC (gt)

\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)

AB = AD (gt)

\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)

\(\Rightarrow BE=CD\) (2 cạnh t/ư)

b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)

\(DN=\frac{1}{2}CD\) (N là tđ)

mà BE = CD \(\Rightarrow BM=DN\)

\(\Delta BEA=\Delta DCA\) (câu a)

\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)

hay \(\widehat{MBA}=\widehat{NDA}\)

Xét \(\Delta ABM\)\(\Delta ADN\) có:

AB = AD (gt)

\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)

BM = DN (c/m trên)

\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)

\(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)

\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)

\(\Rightarrow M,A,N\) thẳng hàng.

22 tháng 2 2017

Bài làm rất công phu

23 tháng 6 2017

Vẽ IK vuông góc với AC;IM vuông góc với AB
IK=IH=IM=1cm(I là gđ của 3 đường phân giác)
=>AM=AK=1 cm
▲BNI=▲BHI(cạnh huyền - góc nhọn)
=>BM=BH=2 cm
▲CKI=▲CHI(cạnh huyền - góc nhọn)
=>CK=CH=3cm
C▲ABC=AB+AC+BC=3+4+5=12cm

8 tháng 1 2018

B C A M N H K O

a) Tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN có:

AB = AC

MB = NC

\(\widehat{ABM}=\widehat{ACN}\)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c-g-c\right)\)

b) Do \(\Delta ABM=\Delta ACN\Rightarrow\widehat{BAH}=\widehat{CAK}\)  (Hai góc tương ứng)

Xét tam giác vuông AHB và AKC có:

AB = AC (gt)

\(\widehat{BAH}=\widehat{CAK}\)

\(\Rightarrow\Delta AHB=\Delta AKC\)   (Cạnh huyền - góc nhọn)

\(\Rightarrow AH=AK\)

c) Ta có \(\Delta AHB=\Delta AKC\Rightarrow HB=KC\)

Xét tam giác vuông AHO và AKO có:

AH = AK

AO chung

\(\Rightarrow\Delta AHO=\Delta AKO\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HO=KO\)

Mà HB = CK nên OB = OH - HB = OK - CK = OC

Vậy nên tam giác OBC cân tại O.

6 tháng 3 2019

Giải :

Hình vẽ ; giả thiết, kết luận đã được đầu bài cho sẵn.

Chứng minh :

Xét \(\Delta AMC\text{ và }\Delta BMD\), có :

\(MA=MB\text{ (gt)}\)

\(\angle AMC=\angle DMB\text{ (đối đỉnh)}\)

\(DM=CM\text{ (gt)}\)

\(\Rightarrow\Delta AMC=\Delta BMD\text{ (c.g.c)}\)

10 tháng 3 2019

b/ Ta có : \(\bigtriangleup AMC=\bigtriangleup BMD\text{ (c.m.t)}\)

\(\Rightarrow\widehat{DBM}=\widehat{ACM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (1)

\(\Rightarrow BD//AC\)

Xét \(\bigtriangleup DMA\text{ và }\bigtriangleup BMC,\text{ có :}\)

\(\widehat{DMA}=\widehat{BMC}\text{ (đối đỉnh)}\)

\(DM=CM\left(gt\right)\)

\(BM=AM\left(gt\right)\)

\(\Rightarrow\bigtriangleup DMA=\bigtriangleup BMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{ADM}=\widehat{DCM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (2)

\(\text{Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành}\) (3)

\(\angle ACB=90^{\text{o}}\) (4)

\(\text{T}ừ\text{ (3) và (4) suy ra hình bình hành ABCD là hình chữ nhật}\) (đpcm)