Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔGHM và ΔGIM có
GH=GI
\(\widehat{HGM}=\widehat{IGM}\)
GM chung
Do đó: ΔGHM=ΔGIM
b: Ta có: ΔGHM=ΔGIM
nên MH=MI
Ta có: ΔGHI cân tai G
mà GM là đường trung tuyến
nên GM là đường cao
c: Xét ΔGPM vuông tại P và ΔGQM vuông tại Q có
GM chung
\(\widehat{PGM}=\widehat{QGM}\)
Do đó: ΔGPM=ΔGQM
Suy ra: MP=MQ
hay ΔMPQ cân tại M
câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
Vẽ IK vuông góc với AC;IM vuông góc với AB
IK=IH=IM=1cm(I là gđ của 3 đường phân giác)
=>AM=AK=1 cm
▲BNI=▲BHI(cạnh huyền - góc nhọn)
=>BM=BH=2 cm
▲CKI=▲CHI(cạnh huyền - góc nhọn)
=>CK=CH=3cm
C▲ABC=AB+AC+BC=3+4+5=12cm
B C A M N H K O
a) Tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét tam giác ABM và tam giác ACN có:
AB = AC
MB = NC
\(\widehat{ABM}=\widehat{ACN}\)
\(\Rightarrow\Delta ABM=\Delta ACN\left(c-g-c\right)\)
b) Do \(\Delta ABM=\Delta ACN\Rightarrow\widehat{BAH}=\widehat{CAK}\) (Hai góc tương ứng)
Xét tam giác vuông AHB và AKC có:
AB = AC (gt)
\(\widehat{BAH}=\widehat{CAK}\)
\(\Rightarrow\Delta AHB=\Delta AKC\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\)
c) Ta có \(\Delta AHB=\Delta AKC\Rightarrow HB=KC\)
Xét tam giác vuông AHO và AKO có:
AH = AK
AO chung
\(\Rightarrow\Delta AHO=\Delta AKO\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HO=KO\)
Mà HB = CK nên OB = OH - HB = OK - CK = OC
Vậy nên tam giác OBC cân tại O.
Giải :
Hình vẽ ; giả thiết, kết luận đã được đầu bài cho sẵn.
Chứng minh :
Xét \(\Delta AMC\text{ và }\Delta BMD\), có :
\(MA=MB\text{ (gt)}\)
\(\angle AMC=\angle DMB\text{ (đối đỉnh)}\)
\(DM=CM\text{ (gt)}\)
\(\Rightarrow\Delta AMC=\Delta BMD\text{ (c.g.c)}\)
b/ Ta có : \(\bigtriangleup AMC=\bigtriangleup BMD\text{ (c.m.t)}\)
\(\Rightarrow\widehat{DBM}=\widehat{ACM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (1)
\(\Rightarrow BD//AC\)
Xét \(\bigtriangleup DMA\text{ và }\bigtriangleup BMC,\text{ có :}\)
\(\widehat{DMA}=\widehat{BMC}\text{ (đối đỉnh)}\)
\(DM=CM\left(gt\right)\)
\(BM=AM\left(gt\right)\)
\(\Rightarrow\bigtriangleup DMA=\bigtriangleup BMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ADM}=\widehat{DCM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (2)
\(\text{Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành}\) (3)
\(\angle ACB=90^{\text{o}}\) (4)
\(\text{T}ừ\text{ (3) và (4) suy ra hình bình hành ABCD là hình chữ nhật}\) (đpcm)
a) Do GM là tia phân giác của ∠HGI (gt)
⇒ ∠HGM = ∠IGM
Xét ∆GHM và ∆GIM có:
GH = GI (do ∆GHI cân tại G)
∠HGM = ∠IGM (cmt)
GM là cạnh chung
⇒ ∆GHM = ∆GIM (c-g-c)
b) Do ∆GHM = ∆GIM (cmt)
⇒ HM = IM (hai cạnh tương ứng)
Do ∆GHM = ∆GIM (cmt)
⇒ ∠GMH = ∠GMI (hai góc tương ứng)
Mà ∠GMH + ∠GMI = 180⁰ (kề bù)
⇒ ∠GMH = ∠GMI = 180⁰ : 2 = 90⁰
⇒ GM ⊥ HI
c) Do ∠HGM = ∠IGM (cmt)
⇒ ∠PGM = ∠QGM
Xét hai tam giác vuông: ∆GMP và ∆GMQ có:
GM là cạnh chung
∠PGM = ∠QGM (cmt)
⇒ ∆GMP = ∆GMQ (cạnh huyền góc nhọn)
⇒ MP = MQ (hai cạnh tương ứng)
⇒ ∆MPQ cân tại M