Bài 1:

Cho tam giác ABC có AC = 16cm, AB = 12 cm, BC...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên \(\widehat{B}\simeq53^0\)

=>\(\widehat{C}\simeq37^0\)

AH=AB*AC/BC=12*16/20=192/20=9,6cm

d: Xét ΔABC vuông tại A có 

tan B=AC/AB=4/3

sin B=AC/BC=4/5

mà 4/3>4/5

nên tan B>sin B

3 tháng 8 2023

Vẽ hình luôn nha, huhu cứu mình với

 

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên \(\widehat{B}\simeq53^0\)

=>góc C=90-53=37 độ

AH=AB*AC/BC=12*16/20=192/20=9,6cm

d: Xét ΔABC vuông tại A có 

tan B=AC/AB=4/3

sin B=AC/BC=4/5

mà 4/3>4/5

nên tan B>sin B

d: tan B=AC/AB

sin B=AC/BC

AB<BC(ΔABC vuôngtại A)

=>AC/AB>AC/BC

=>tanB>sin B

b: Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*20=12*16

=>AH=9,6cm

Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên góc B=53 độ

=>góc C=37 độ

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có sin B=AC/BC=4/5

nên góc B=53 độ

=>góc C=37 độ

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*20=12*16=192

=>AH=9,6cm

c: 

HB=AB^2/BC=12^2/20=7,2cm

HC=16^2/20=12,8cm

ΔAHB vuông tại H có HE là đường cao

nên HE*AB=AH*HB

=>HE*12=7,2*4,8

=>HE=2,88(cm)

ΔAHC vuông tại H có FH là đường cao

nên HF*AC=HA*HC

=>HF*16=4,8*12,8

=>HF=12,8*0,3=3,84(cm)

Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR 

\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào 

31 tháng 5 2017

a/ Ta có CF vuông góc AB tại F (gt) 

Nên góc CFB = 90 độ 

BE vuông góc AC tại E 

Nên góc BEC = 90 độ 

Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt 

Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .

góc BEC = 90 độ (cmt)

Nên tam giác BEC vuông tại E 

Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .