Tam giác ABC (hình vẽ) có ba đường trung tuyến AM, BN, CP. Gọi G là trọng tâm của tam gi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(BM=\dfrac{1}{2}BC\)

\(GE=\dfrac{1}{2}AB\)

DF=AC

22 tháng 3 2017

HFa, kg

2 tháng 5 2018

A B C D G M E F

a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.

Xét tam giác DMB và tam giác GMC có:

DM = GM

BM = CM

\(\widehat{DMB}=\widehat{GMC}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)

\(\Rightarrow BD=CG\)

b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)

Xét tam giác FBM và tam giác ECM có:

\(\widehat{FMB}=\widehat{EMC}=90^o\)

BM = CM

\(\widehat{FBM}=\widehat{ECM}\)

\(\Rightarrow\Delta FBM=\Delta ECM\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BF=CE\left(đpcm\right)\)

17 tháng 4 2015
  1. Ta có: G là trọng tâm của tam giác 

          suy ra: MG=1/2AM,suy ra: MG=1/2AG

          mà AG=GD suy ra: MG=1/2GD -> MG=MD( điều phải cm)

     2. xét tam giác BDM và tam giác CGM

        góc GMC=góc DMB (đối đỉnh); GM=MD (cm trên); BM=CM (AM là trung tuyến)

        -> tam giác BDM = tam giác CGM(c.g.c)

        -> BD=CG (dpcm)