Ta biết rằng hai đoạn thẳng gọi là bằng nhau nếu độ dài của chúng bằng nhau. Trên hình 5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2023

Đáp án hay, và ngắn gọn, dễ hiểu. Em cám ơn cô ạ.

12 tháng 6 2023

oà, mặc dầu năm sau nữa em mới thi lớp 10 nhưng nhìn cái kiểu này...chắc chắn em sẽ "cóp". Thank you cô Ngọc!

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Áp dụng công thức tính góc giữa hai đường thẳng thôi:

\(\cos (d,\Delta)=\frac{|(m+3)(m-2)-(m-1)(m+1)|}{\sqrt{(m+3)^2+(m-1)^2}\sqrt{(m-2)^2+(m+1)^2}}=\cos 90=0\)

\(\Leftrightarrow (m+3)(m-2)-(m-1)(m+1)=0\)

\(\Leftrightarrow m-5=0\Leftrightarrow m=5\)

Vậy $m=5$

16 tháng 11 2021

Giải bài 4 trang 17 sgk Hình học 10 | Để học tốt Toán 10

bai-4-trang-17-sgk-hinh-hoc-10-9.PNGTL:

HT

@lâm

30 tháng 11 2021

cop mạng nhé nhưng mà châm trc

Bài 1. (2 điểm)a) Thực hiện phép tínhb) Tìm các giá trị của m để hàm số y = (√m - 2)x + 3 đồng biến.Bài 2. (2 điểm)a) Giải phương trình: x4 - 24x2 - 25 = 0.b) Giải hệ phương trình:{2x - y = 29x + 8y = 34Bài 3. (2 điểm)Cho phương trình ẩn x: x2 - 5x + m - 2 = 0 (1)a) Giải phương trình (1) khi m = −4 .b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1; x2 thoả mãn hệ thứcBài 4. (4 điểm)Cho...
Đọc tiếp

Bài 1. (2 điểm)

a) Thực hiện phép tính

b) Tìm các giá trị của m để hàm số y = (√m - 2)x + 3 đồng biến.

Bài 2. (2 điểm)

a) Giải phương trình: x4 - 24x2 - 25 = 0.

b) Giải hệ phương trình:{2x - y = 2
9x + 8y = 34

Bài 3. (2 điểm)

Cho phương trình ẩn x: x2 - 5x + m - 2 = 0 (1)

a) Giải phương trình (1) khi m = −4 .

b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1; x2 thoả mãn hệ thức

Bài 4. (4 điểm)

Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) (với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF = 4R/3.

a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF.

b) Tính Cos góc DAB.

c) Kẻ OM ⊥ BC (M ∈ AD). Chứng minh BD/DM - DM/AM = 1.

d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R.

Bài 1: (2điểm)

a) Thực hiện phép tính:

b) Hàm số y = (√m - 2)x + 3 đồng biến

<=> m > 4

2
13 tháng 3 2017

Bài 2

a) \(x^4-24x^2-25=0\) ( 1 )

Đặt \(t=x^2\) ( điều kiện \(t\ge0\) )

\(pt\left(1\right)\Leftrightarrow t^2-24t-25=0\)

\(\Delta=b^2-4ac\)

\(\Delta=676\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{24+\sqrt{676}}{2}=25\left(nhận\right)\\t_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{24-\sqrt{676}}{2}=-1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2=25\)

\(\Rightarrow x=\pm5\)

b)

\(\left\{{}\begin{matrix}2x-y=2\\9x+8y=34\end{matrix}\right.\)

Xét \(2x-y=2\)

\(\Rightarrow x=\dfrac{2+y}{2}\)

Ta có \(9x+8y=34\)

\(\Leftrightarrow\dfrac{9\left(2+y\right)}{2}+8y=34\)

\(\Leftrightarrow\dfrac{18+9y}{2}+8y=34\)

\(\Leftrightarrow\dfrac{18+25y}{2}=34\)

\(\Leftrightarrow18+25y=68\)

\(\Rightarrow y=2\)

\(\Rightarrow x=\dfrac{y+2}{2}=2\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

13 tháng 3 2017

Bài 3

a) \(x^2-5x+m-2=0\)

Thay \(m=-4\) vào phương trình

\(\Rightarrow x^2-5x-6=0\)

\(\Delta=b^2-4ac\)

\(\Delta=49\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{49}}{2}=6\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{49}}{2}=-1\end{matrix}\right.\)

b )

\(x^2-5x+m-2=0\)

\(\Delta=b^2-4ac\)

\(\Delta=33-4m\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}P=x_1+x_2=\dfrac{-b}{a}\\S=x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=x_1+x_2=5\\S=x_1x_2=m-2\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}33-4m>0\\m-2>0\\5>0\left(đúng\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\m>2\end{matrix}\right.\)

\(\Rightarrow2< m< \dfrac{33}{4}\)

Ta có \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1x_2}}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}{x_1x_2}=\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{5+\sqrt{m-2}}{m-2}=\dfrac{9}{4}\)

\(\Leftrightarrow20+4\sqrt{m-2}=9m-18\)

\(\Leftrightarrow4\sqrt{m-2}=9m-38\)

\(\Leftrightarrow64m-128=\left(9m-38\right)^2\)

\(\Leftrightarrow64m-128=81m^2-684m+1444\)

\(\Leftrightarrow81m^2-748m+1572=0\)

\(\Delta=b^2-4ac\)

\(\Delta=50176\)

\(\Rightarrow\left\{{}\begin{matrix}m_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{748+\sqrt{50176}}{162}=6\\m_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{748-\sqrt{50176}}{162}=\dfrac{262}{81}\end{matrix}\right.\)

\(2< m< \dfrac{33}{4}\)

\(\Rightarrow m\in\left\{6;\dfrac{262}{81}\right\}\)

30 tháng 3 2017

- Các vectơ cùng phương: ; , , ; .

- Các vectơ cùng hướng: ; , ,

- Các vectơ ngược hướng: ; ; ; .

- Các vectơ bằng nhau: = .

29 tháng 7 2022

a)     (-\infty ; \, 2) \cap (-1; \, +\infty)(;2)(1;+)=(-1;2)

b)     (1;6∪ [4;8)=(-1;8]

c)      (;5] (5;1)={-5}
22 tháng 9 2015

trả lời giúp mình với 

22 tháng 9 2015

a,\(\int\limits^{\frac{\Pi}{6}}_0\frac{sin\left(2x+x\right)}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{sin2x.cosx+cos2x.sinx}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{2cos^2x.sinx+\left(2cos^2x-1\right)sinx}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{4cos^2x.sinx}{cos^2x}dx+\int\limits^{\frac{\Pi}{6}}_0\frac{d\left(cosx\right)}{cos^2x}=\int\limits^{\frac{\Pi}{6}}_0sinxdx-\frac{1}{cosx}\)

thay cận vào nhé

23 tháng 9 2017

hình :

A B C D E M 3 3 3 3

* ta kẻ hình bình hành \(ABEM\)

\(\Rightarrow\) \(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AE}\) (qui tắc hình bình hành)

\(\Rightarrow\left|\overrightarrow{AM}+\overrightarrow{AB}\right|=\overrightarrow{AE}=AE\)

ta có : \(ME=AB=3\) (2 cảnh đối của hình bình hành \(ABEM\))

\(DM=\dfrac{1}{2}DC=\dfrac{1}{2}.3=\dfrac{3}{2}\)

\(\Rightarrow DE=DM+ME=\dfrac{3}{2}+3=\dfrac{9}{2}\)

xét tam giác vuông \(ADE\)

ta có : \(AE^2=DA^2+DE^2\Leftrightarrow AE=\sqrt{DA^2+DE^2}\)

\(AE=\sqrt{3^2+\left(\dfrac{9}{2}\right)^2}=\dfrac{3\sqrt{13}}{2}\)

vậy \(\left|\overrightarrow{AM}+\overrightarrow{AB}\right|=\overrightarrow{AE}=AE=\dfrac{3\sqrt{13}}{2}\)