Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh củ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2019

A B C F E D

Xét hai tam giác vuông EBC và DCB có :

BC (cạnh chung)

CE = BD (giả thiết)

⇒ ∆EBC = ∆DCB (cạnh huyền - cạnh góc vuông)

=>   \(\widehat{EBC}=\widehat{DBC}\)(2 GÓC TƯƠNG ỨNG)

HAY  \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\)\(\Delta ABC\)CÂN TẠI A

+ Xét ΔABC ba đường cao BD = CE = AF (như hình vẽ minh họa)

CE = BD ⇒ ΔABC cân tại A (như cmt) ⇒ AB = AC.

CE = AF ⇒ ΔABC cân tại B (như cmt) ⇒ AB = BC:

⇒ AB = AC = BC

⇒ ΔABC đều.

19 tháng 4 2017

Hướng dẫn:

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF (giả thiết)

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> \(\widehat{FBC}=\widehat{ECB}\)

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra đó là tam giác đều.

 

19 tháng 4 2017

Bạn Thien Tu Borum làm nhanh vô rồi sai hình thức rồi kìa

12 tháng 5 2018

Vẽ BH⊥ACvà CK⊥AB

Xét hai tam giác vuông KBC và HCB có:

    Cạnh BC chung

    BH=CK(gt)

⇒ΔKBC=ΔHCB

⇒KBCˆ=HCBˆ

Xét tam giác ABC, có: 

KBCˆ=HCBˆ hay ABCˆ=ACBˆ 

Vậy tam giác ABC cân tại A (đpcm)

 Ba đường cao bằng nhau

Từ a) ta có:

    Nếu BH = CK thì ΔABC cân tại A => AB = AC (1)

    Nếu AI = BH thì ΔABC cân tại C => CA = CB (2)

Từ (1) và (2) ta có: AB = BC = AC

Vậy ΔABC là tam giác đều.

Xét hai tam giác vuông EBC và FCB có:
BC (cạnh huyền chung)
BE = CF
Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

\(\Rightarrow\widehat{FBC}=\widehat{ECB}\)
hay  ∆ABC cân tại A
+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng
minh được đó là tam giác đều.

11 tháng 10 2018

A F E B H C

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> Góc FBC = góc ECB

hay  ∆ABC cân tại A

5 tháng 8 2017

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> 

hay  ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được đó là tam giác đều.

- Phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh • các dụngm giác là tam giác cân.(5) Phát biểu định nghĩa và tính chất tam giác đều. Nêu các cách chứng minh tam giác là tam giác đều.(6) Phát biểu định lí Py-ta-go thuận và đảo. b) Trả lời các câu hỏi sau(1) Thế nào là hai tam giác bằng nhau? đến đo (2) Thế nào là tam giác cân?(3) Thế nào là tam giác vuông cân? (4) Thế...
Đọc tiếp

- Phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh • các dụng

m giác là tam giác cân.

(5) Phát biểu định nghĩa và tính chất tam giác đều. Nêu các cách chứng minh tam giác là tam giác đều.

(6) Phát biểu định lí Py-ta-go thuận và đảo. b) Trả lời các câu hỏi sau

(1) Thế nào là hai tam giác bằng nhau? đến đo (2) Thế nào là tam giác cân?

(3) Thế nào là tam giác vuông cân? (4) Thế nào là tam giác đều? (5) Nêu các tính chất của tam giác cân. (6) Nêu các tính chất của tam giác vuông cân. (7) Nêu các tính chất của tam giác đều. c) Đố bạn nêu chính xác các tính chất sau: (1) Nếu ba cạnh của tam giác này .... tam giác kia, thì hai tam giác đó bằng

(2) Nếu hai cạnh và góc xen giữa của tam giác này .... tam giác kia, thì giác đó bằng nhau.

(3) Nếu một cạnh và hai góc kề của tam giác này .... tam giác kia, thì hai ta đó bằng nhau.

(4) Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vụ .... tam giác vuông kia, thì hai tam giác đó bằng nhau.

(5) Nếu cạnh huyền và một góc nhọn của tam giác vuông này .... tam giá kia, thì hai tam giác đó bằng nhau. | (6) Nếu hai cạnh góc vuông của tam giác vuông này .... tam giác vuông ki tam giác đó bằng nhau.

6 tính chất tam giác vuông cân

(7) Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này .... vuông kia, thì hai tam giác đó bằng nhau.

(8) Trong một tam giác vuông, bình phương của cạnh huyền bằng... cạnh g (9) Nếu một tam giác có bình phương của một cạnh bằng... đó là tam gi

 

0

Các tính chất ở cá câu a ,b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180o".

Tính chất ở câu c được suy ra từ định lí "Trong một tam giác cân hai góc ở đáy bằng nhau".

Tính chất ở câu d được suy ra từ định lí: Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác cân.

20 tháng 4 2017

Các tính chất ở các câu (a); (b) được suy ra từ định lí: “Tổng ba góc của một tam giác bằng nhau bằng 1800”.

Tính chất ở câu (c) được suy ra từ định lí: “Trong tam giác cân, hai góc ở đáy bằng nhau”.

Tính chất ở câu (d) được suy ra từ định lí: “Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân”.


30 tháng 9 2018

a) Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó

- Được suy ra từ Định lí tổng ba góc của một tam giác

b) trong một tam giác vuông,hai góc nhọn phụ nhau

- Được suy ra từ Định nghĩa tam giác vuông 

c) Trong một tam giác đều,các góc bằng nhau

- Được suy ra từ các định lí :

 + Trong một tam giác câu, hai góc ở đáy bằng nhau.

 + Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.

d) nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

 - ĐL đảo của ĐL ở câu c