Bài 3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Bọn nhân viên chó điên như:Quản lí,admin,olm,... đâu hết rồi

 1. Dạng chuyển động:Đề bài: Một ca nô xuôi dòng từ bến A đến bến B mất 4 giờ và ngược dòng từ bến A đến bến B mất 5 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2km/h.2. Dạng thêm bớt:Bài 1: Có 472 lít dầu đựng trong hai thùng. Nếu lấy bớt dầu ở thùng thứ nhất 50 lít đổ vào thùng thứ hai thì dầu ở thùng thứ hai sẽ nhiều hơn thùng thứ...
Đọc tiếp

 

1. Dạng chuyển động:

Đề bài: Một ca nô xuôi dòng từ bến A đến bến B mất 4 giờ và ngược dòng từ bến A đến bến B mất 5 giờ. Tính khoảng cách giữa hai bến A và B, biết rằng vận tốc của dòng nước là 2km/h.

2. Dạng thêm bớt:

Bài 1: Có 472 lít dầu đựng trong hai thùng. Nếu lấy bớt dầu ở thùng thứ nhất 50 lít đổ vào thùng thứ hai thì dầu ở thùng thứ hai sẽ nhiều hơn thùng thứ nhất là 24 lít. Hỏi lúc đầu mỗi thùng chứa bao nhiêu lít dầu ?

Bài 2: Thư viện của một trường THCS có hai kệ sách. Số sách của kệ thứ nhất gấp 3 lần số sách của kệ thứ hai. Nếu chuyển 30 quyển sách từ kệ thứ nhất sanh kệ thứ hai thì số sách của kệ thứ nhất gấp 2 lần số sách của kệ thứ hai. Hỏi thư viện có bao nhiêu cuốn sách ?

HELP ME !!!

 

0

\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)

\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)

Cũa mị:>>>

21 tháng 3 2022

Tham khảo ạ !!!

A = 1002 - 992 + 982 - 972 + ...... + 22 - 12

= ( 100 - 99 ) ( 100 + 99 ) + ( 98 - 97 ) ( 98 + 97 ) + ......... + ( 2 - 1 ) ( 2 + 1 )

= 1 + 2 + 3 + ......... + 99 + 100

= ( 100 + 1 ) . 100 : 2 = 5050 

 B = 3 ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 12

= ( 22 - 1 ) ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 24 - 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 28 - 1 ) ( 28 + 1 ) ... ( 264 + 1 ) + 1

= ( 216 - 1 ) ( 216 + 1 ) ... ( 264 + 1 ) + 1

= ( 232 - 1 ) ( 232 + 1 ) ( 264 + 1 ) + 1

= ( 264 - 1 ) ( 264 + 1 ) + 1

= 2128 - 1 + 1 

= 2128

C = ( a + b + c )2 + ( a + b - c )2 - 2 ( a + b )2

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2 ( a2 + 2ab + b2 )

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2a2 - 4ab - 2b2

= 2c2

13 tháng 11 2021

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

Gọi ba số nguyên liên tiếp là \(\hept{\begin{cases}x-1\\x\\x+1\end{cases}}\left(x\inℤ\right)\)

=> Lập phương của ba số đó lần lượt là \(\hept{\begin{cases}\left(x-1\right)^3\\x^3\\\left(x+1\right)^3\end{cases}}\)

Ta có:

\(\left(x-1\right)^3+x^3+\left(x+1\right)^3\)

\(=\left(x^3-3x^2+3x-1\right)+x^3+\left(x^3+3x^2+3x+1\right)\)

\(=x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1\)

\(=(x^3+x^3+x^3)+(-3x^2+3x^2)+(3x+3x)+(-1+1)\)

\(=3x^3+6x\)

\(=3x^3-3x+9x\)

\(=3x.(x^2-1)+9x\)

\(=3.(x-1).x(x+1)+9x\)

Ta có: \(9x⋮9\)

Mà: \(\left(x-1\right).x.\left(x+1\right)\) là ba số nguyên liên tiếp, trong đó có ít nhất một số phải chia hết cho 3

\(\Rightarrow\left(x-1\right).x.\left(x+1\right)⋮3\)

\(\Rightarrow3.\left(x-1\right).x.\left(x+1\right)⋮9\)

Vậy \(3.\left(x-1\right).x.\left(x+1\right)+9x⋮9\)

13 tháng 11 2021

11.

a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

Giả sử A và B là hai số nguyên thoả mãn điều kiện

\(\hept{\begin{cases}A=a^2+b^2\\B=c^2+d^2\end{cases}\left(a,b,c,d\inℤ\right)}\)

\(\Rightarrow AB=\left(a^2+b^2\right).\left(c^2+d^2\right)\)

\(=a^2c^2+b^2d^2+b^2c^2+a^2d^2\)

\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=(ac+bd)^2+(ad-bc)^2\)

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

Trường hợp 1:  \(k=3\)

Gọi ba số nguyên liên tiếp là \(\hept{\begin{cases}n-1\\n\\n+1\end{cases}}\)

\(\Leftrightarrow\) \((n-1)^2+n^2+(n+1)^2\)

\(\Leftrightarrow\) \(3n^2+2:3\) dư \(1\)

Vậy không phải là số chính phương

Trường  hợp 2: \(k=4\)

Gọi bốn số đó là \(n-2;n-1;n;n+1\)

\(\Leftrightarrow\) \((n-2)^2 + (n -1)^2 + n^2 + (n+1)^2 \)

\(\Leftrightarrow\) \(4n^2-4n+6\) chia hết cho \(6\) nhưng không chia hết cho \(4\)

Vậy không phải là số chính phương

Trường hợp 3: \(k=5\)

Gọi năm số đó là \(n-2;n-1;n;n+1;n+2\)

\(\Leftrightarrow\) \((n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2\)

\(\Leftrightarrow\) \(5n^2+10\) chia hết cho \(5\) nhưng không chia hết cho \(25\)

Vậy không phải là số chính phương

 Nhân các vế tương ứng của hai phương trình ta được

Giải bài tập trang 57 SGK Đại số 10: Đại cương về phương trình

Phương tình này không tương đương với phương trình nào trong các phương trình đã cho.

Giải bài tập trang 57 SGK Đại số 10: Đại cương về phương trình

b) Phương trình mới cũng không là phương trình hệ quả của một phương trình nào đã cho.

9 tháng 10 2020

a) Xét tam giác BDC có: MB= MC (gt), ED= EC (gt)

=> ME là đường trung bình tam giác BDC (đ/n)

=> ME // BD (t/c)

b) Vì ME// BD (cmt) => ME // IB // ID ( I thuộc BD)

 - Xét tam giác AME có: ME // ID (cmt), DA= DE (gt)

=> IA = IM (t/c)

Hay I là trung điểm của AM (đpcm)

c) +) Vì ME là đường TB tam giác BDC (cmt) => \(ME=\frac{1}{2}BD\)(t/c)     (1)

    +) Xét tam giác AME có IA= IM (cmt), DA= DE (gt)

=> ID là đường TB tam giác AME (đ/n)

=> \(ID=\frac{1}{2}ME\)(t/c)           (2)

   Từ (1) và (2) có:      \(ID=\frac{1}{4}BD\)

                   =>       4. ID  =  BD       

                    =>      4.ID   =    IB + ID

                   =>      IB       =     3ID  (đpcm)

d) Nối FC, FI.  Kẻ MN // FC.(N thuộc AB)

    +) Xét tam giác BFC có MN // FC (cvẽ), MB = MC (gt)

  => NB = NF (t/c)

        Xét tam giác BFC có NB = NF (cmt), MB = MC (gt)

  => MN là đường TB tam giác BFC (đ/n)

  => MN // FC (t/c)              (3)

    +) Vì AF = 1/3.AB (gt) và AB= FA+ FB

  =>  AF = 1/2.FB mà NB + NF = FB, NB = NF (cmt)

  => AF = NF = NB

     +) Xét tam giác AMN có IA = IM (cmt), FA =FN (cmt)

  =>  FI là đường TB tam giác AMN (đ/n)

  => FI // MN (t/c)              (4)

         Từ (3) và (4) có FI và FC trùng nhau (theo tiên đề Ơ-clit)

                             => 3 điểm F, I, C thẳng hàng (đpcm)

**: Bn tự vẽ hình nhaaaaaaa......