Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)
\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)
\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)
Cũa mị:>>>
Tham khảo ạ !!!
A = 1002 - 992 + 982 - 972 + ...... + 22 - 12
= ( 100 - 99 ) ( 100 + 99 ) + ( 98 - 97 ) ( 98 + 97 ) + ......... + ( 2 - 1 ) ( 2 + 1 )
= 1 + 2 + 3 + ......... + 99 + 100
= ( 100 + 1 ) . 100 : 2 = 5050
B = 3 ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 12
= ( 22 - 1 ) ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1
= ( 24 - 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1
= ( 28 - 1 ) ( 28 + 1 ) ... ( 264 + 1 ) + 1
= ( 216 - 1 ) ( 216 + 1 ) ... ( 264 + 1 ) + 1
= ( 232 - 1 ) ( 232 + 1 ) ( 264 + 1 ) + 1
= ( 264 - 1 ) ( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
C = ( a + b + c )2 + ( a + b - c )2 - 2 ( a + b )2
= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2 ( a2 + 2ab + b2 )
= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2a2 - 4ab - 2b2
= 2c2
9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.
Gọi ba số nguyên liên tiếp là \(\hept{\begin{cases}x-1\\x\\x+1\end{cases}}\left(x\inℤ\right)\)
=> Lập phương của ba số đó lần lượt là \(\hept{\begin{cases}\left(x-1\right)^3\\x^3\\\left(x+1\right)^3\end{cases}}\)
Ta có:
\(\left(x-1\right)^3+x^3+\left(x+1\right)^3\)
\(=\left(x^3-3x^2+3x-1\right)+x^3+\left(x^3+3x^2+3x+1\right)\)
\(=x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1\)
\(=(x^3+x^3+x^3)+(-3x^2+3x^2)+(3x+3x)+(-1+1)\)
\(=3x^3+6x\)
\(=3x^3-3x+9x\)
\(=3x.(x^2-1)+9x\)
\(=3.(x-1).x(x+1)+9x\)
Ta có: \(9x⋮9\)
Mà: \(\left(x-1\right).x.\left(x+1\right)\) là ba số nguyên liên tiếp, trong đó có ít nhất một số phải chia hết cho 3
\(\Rightarrow\left(x-1\right).x.\left(x+1\right)⋮3\)
\(\Rightarrow3.\left(x-1\right).x.\left(x+1\right)⋮9\)
Vậy \(3.\left(x-1\right).x.\left(x+1\right)+9x⋮9\)
11.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
Giả sử A và B là hai số nguyên thoả mãn điều kiện
\(\hept{\begin{cases}A=a^2+b^2\\B=c^2+d^2\end{cases}\left(a,b,c,d\inℤ\right)}\)
\(\Rightarrow AB=\left(a^2+b^2\right).\left(c^2+d^2\right)\)
\(=a^2c^2+b^2d^2+b^2c^2+a^2d^2\)
\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=(ac+bd)^2+(ad-bc)^2\)
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Trường hợp 1: \(k=3\)
Gọi ba số nguyên liên tiếp là \(\hept{\begin{cases}n-1\\n\\n+1\end{cases}}\)
\(\Leftrightarrow\) \((n-1)^2+n^2+(n+1)^2\)
\(\Leftrightarrow\) \(3n^2+2:3\) dư \(1\)
Vậy không phải là số chính phương
Trường hợp 2: \(k=4\)
Gọi bốn số đó là \(n-2;n-1;n;n+1\)
\(\Leftrightarrow\) \((n-2)^2 + (n -1)^2 + n^2 + (n+1)^2 \)
\(\Leftrightarrow\) \(4n^2-4n+6\) chia hết cho \(6\) nhưng không chia hết cho \(4\)
Vậy không phải là số chính phương
Trường hợp 3: \(k=5\)
Gọi năm số đó là \(n-2;n-1;n;n+1;n+2\)
\(\Leftrightarrow\) \((n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2\)
\(\Leftrightarrow\) \(5n^2+10\) chia hết cho \(5\) nhưng không chia hết cho \(25\)
Vậy không phải là số chính phương
Nhân các vế tương ứng của hai phương trình ta được
Phương tình này không tương đương với phương trình nào trong các phương trình đã cho.
b) Phương trình mới cũng không là phương trình hệ quả của một phương trình nào đã cho.
a) Xét tam giác BDC có: MB= MC (gt), ED= EC (gt)
=> ME là đường trung bình tam giác BDC (đ/n)
=> ME // BD (t/c)
b) Vì ME// BD (cmt) => ME // IB // ID ( I thuộc BD)
- Xét tam giác AME có: ME // ID (cmt), DA= DE (gt)
=> IA = IM (t/c)
Hay I là trung điểm của AM (đpcm)
c) +) Vì ME là đường TB tam giác BDC (cmt) => \(ME=\frac{1}{2}BD\)(t/c) (1)
+) Xét tam giác AME có IA= IM (cmt), DA= DE (gt)
=> ID là đường TB tam giác AME (đ/n)
=> \(ID=\frac{1}{2}ME\)(t/c) (2)
Từ (1) và (2) có: \(ID=\frac{1}{4}BD\)
=> 4. ID = BD
=> 4.ID = IB + ID
=> IB = 3ID (đpcm)
d) Nối FC, FI. Kẻ MN // FC.(N thuộc AB)
+) Xét tam giác BFC có MN // FC (cvẽ), MB = MC (gt)
=> NB = NF (t/c)
Xét tam giác BFC có NB = NF (cmt), MB = MC (gt)
=> MN là đường TB tam giác BFC (đ/n)
=> MN // FC (t/c) (3)
+) Vì AF = 1/3.AB (gt) và AB= FA+ FB
=> AF = 1/2.FB mà NB + NF = FB, NB = NF (cmt)
=> AF = NF = NB
+) Xét tam giác AMN có IA = IM (cmt), FA =FN (cmt)
=> FI là đường TB tam giác AMN (đ/n)
=> FI // MN (t/c) (4)
Từ (3) và (4) có FI và FC trùng nhau (theo tiên đề Ơ-clit)
=> 3 điểm F, I, C thẳng hàng (đpcm)
**: Bn tự vẽ hình nhaaaaaaa......
1+1=2
học tốt nha
ARMY CỐ LÊN :))