Tìm tất cả các số tự nhiên n để:

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2021

1) n+ 4 = (n+ 4n+ 4) - 4n= (n+ 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1  1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

1 tháng 3 2021

undefined

undefined

\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)

\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)

Cũa mị:>>>

21 tháng 3 2022

Tham khảo ạ !!!

A = 1002 - 992 + 982 - 972 + ...... + 22 - 12

= ( 100 - 99 ) ( 100 + 99 ) + ( 98 - 97 ) ( 98 + 97 ) + ......... + ( 2 - 1 ) ( 2 + 1 )

= 1 + 2 + 3 + ......... + 99 + 100

= ( 100 + 1 ) . 100 : 2 = 5050 

 B = 3 ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 12

= ( 22 - 1 ) ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 24 - 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 28 - 1 ) ( 28 + 1 ) ... ( 264 + 1 ) + 1

= ( 216 - 1 ) ( 216 + 1 ) ... ( 264 + 1 ) + 1

= ( 232 - 1 ) ( 232 + 1 ) ( 264 + 1 ) + 1

= ( 264 - 1 ) ( 264 + 1 ) + 1

= 2128 - 1 + 1 

= 2128

C = ( a + b + c )2 + ( a + b - c )2 - 2 ( a + b )2

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2 ( a2 + 2ab + b2 )

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2a2 - 4ab - 2b2

= 2c2

30 tháng 1 2022

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

A = ( 1002 - 992 ) + ( 982 - 972 ) + ... + ( 22 - 12 )

A = ( 100 - 99 )(100 + 99 ) + (98 - 97 )(98 + 97) + ... + (2-1)(2+1)

A = 199 + 195 + .... + 3

Tổng A có ss hạng là:

( 199 - 3 ) : 4 + 1 = 50 ( số )

Tổng A bằng:

( 199 + 3 ) x 50 : 2 = 5050

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

C = a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + b2 + c2 + 2ab - 2bc - 2ac - 2(a2 + 2ab + b2)

C = 2a2 + 2b2 + 2c2 + 4ab - 2a2  -4ab - 2b2

C = 2c2

30 tháng 1 2022

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

B = (22 - 1)(22 + 1)(24 + 1) ... (264 + 1) + 12

B = ( 24 - 1)(24 + 1)... (264 + 1) + 12

B = (28 - 1)... (264 + 1) + 12

B = (28 - 1)(28+1)... (264 + 1) + 12

B = (216-1)(216+1)... (264 + 1) + 12

B = (232 - 1)(232+1)... (264 + 1) + 12

B = (264 - 1)(264 +1)+1

B = 2128 - 1 + 1

B = 2128

DD
5 tháng 10 2021

a) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+...+2+1\)

\(=\frac{100\left(100+1\right)}{2}=5050\)

10 tháng 5 2021

1, Ta có: 

n2 + 4n + 3

= n2 + n + 3n + 3

= n.(n + 1) + 3.(n + 1)

= (n + 1).(n + 3)

Do n lẻ => n = 2.k + 1 (k thuộc N)

=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)

= (2.k + 2).(2.k + 4)

= 2.(k + 1).2.(k + 2)

= 4.(k + 1).(k + 2)

Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2

-=> 4.(k + 1).(k + 2) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 (đpcm)

10 tháng 5 2021

2A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1) 
vì n lẻ nên: 
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8 
(n - 3) là số chẵn chia hết cho 2 
=> A chia hết cho 16(*) 
mặt khác: 
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1) 
xét các trường hợp: 
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3 
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3 
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3 
=> A chia hết cho 3 (**) 
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau). 

Câu 1 mik ko bít bn thông cảm nha

13 tháng 11 2021

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

Gọi ba số nguyên liên tiếp là \(\hept{\begin{cases}x-1\\x\\x+1\end{cases}}\left(x\inℤ\right)\)

=> Lập phương của ba số đó lần lượt là \(\hept{\begin{cases}\left(x-1\right)^3\\x^3\\\left(x+1\right)^3\end{cases}}\)

Ta có:

\(\left(x-1\right)^3+x^3+\left(x+1\right)^3\)

\(=\left(x^3-3x^2+3x-1\right)+x^3+\left(x^3+3x^2+3x+1\right)\)

\(=x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1\)

\(=(x^3+x^3+x^3)+(-3x^2+3x^2)+(3x+3x)+(-1+1)\)

\(=3x^3+6x\)

\(=3x^3-3x+9x\)

\(=3x.(x^2-1)+9x\)

\(=3.(x-1).x(x+1)+9x\)

Ta có: \(9x⋮9\)

Mà: \(\left(x-1\right).x.\left(x+1\right)\) là ba số nguyên liên tiếp, trong đó có ít nhất một số phải chia hết cho 3

\(\Rightarrow\left(x-1\right).x.\left(x+1\right)⋮3\)

\(\Rightarrow3.\left(x-1\right).x.\left(x+1\right)⋮9\)

Vậy \(3.\left(x-1\right).x.\left(x+1\right)+9x⋮9\)

13 tháng 11 2021

11.

a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

Giả sử A và B là hai số nguyên thoả mãn điều kiện

\(\hept{\begin{cases}A=a^2+b^2\\B=c^2+d^2\end{cases}\left(a,b,c,d\inℤ\right)}\)

\(\Rightarrow AB=\left(a^2+b^2\right).\left(c^2+d^2\right)\)

\(=a^2c^2+b^2d^2+b^2c^2+a^2d^2\)

\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=(ac+bd)^2+(ad-bc)^2\)

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

Trường hợp 1:  \(k=3\)

Gọi ba số nguyên liên tiếp là \(\hept{\begin{cases}n-1\\n\\n+1\end{cases}}\)

\(\Leftrightarrow\) \((n-1)^2+n^2+(n+1)^2\)

\(\Leftrightarrow\) \(3n^2+2:3\) dư \(1\)

Vậy không phải là số chính phương

Trường  hợp 2: \(k=4\)

Gọi bốn số đó là \(n-2;n-1;n;n+1\)

\(\Leftrightarrow\) \((n-2)^2 + (n -1)^2 + n^2 + (n+1)^2 \)

\(\Leftrightarrow\) \(4n^2-4n+6\) chia hết cho \(6\) nhưng không chia hết cho \(4\)

Vậy không phải là số chính phương

Trường hợp 3: \(k=5\)

Gọi năm số đó là \(n-2;n-1;n;n+1;n+2\)

\(\Leftrightarrow\) \((n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2\)

\(\Leftrightarrow\) \(5n^2+10\) chia hết cho \(5\) nhưng không chia hết cho \(25\)

Vậy không phải là số chính phương

30 tháng 12 2021

Tham khảo ạ :

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5

B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5

B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5

B = 7-5=2

HT 

TL:

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5

B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5

B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5

B = 7-5=2

HT

(đúng & sai cứ lm)

DD
14 tháng 5 2021

\(AB=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=4^{2x+1}+1\)

\(=\left(5-1\right)^{2n+1}+1⋮5\)

mà \(\left(A,B\right)=1\)do đó ta có đpcm.