3. Tìm giá trị nhỏ nhất của các biểu thức
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

\(A=4x^2+4x+11\)

\(A=4x^2+4x+1+10\)

\(A=\left(2x+1\right)^2+10\)

Ta có : \(\left(2x+1\right)^2\ge0\) với mọi x 

\(\Rightarrow\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow A_{min}=10\Leftrightarrow x=-\frac{1}{2}\)

11 tháng 11 2021

\(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(B=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(B=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(B=\left(x^2+5x\right)^2\)

Ta có : \(\left(x^2+5x\right)^2\ge-36\)

\(\Rightarrow B_{min}=-36\Leftrightarrow\hept{\begin{cases}x=0\\x=-5\end{cases}}\)

11 tháng 4 2021

a ) A = 4x2 + 4x + 11

         = 4x2 + 4x + 1 + 10

          = ( 2x + 1 )2 + 10

Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R

       => ( 2x + 1 )2 + 10 > 10

       => A > 10

=> Giá trị nhỏ nhất của A là 10

Dấu = xảy ra khi :  ( 2x + 1 )2 = 0

                             => 2x + 1 = 0

                              => x = 12−12

Vậy giá trị nhỏ nhất của A là 10 khi x = 12−12

b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

        = ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x  + 3 )

        = ( x2 + 5x - 6 ) ( x2 + 5x + 6 )

Đặt t = x2 + 5x 

=> B = ( t - 6 ) ( t + 6 )

         = t2 - 36

Nhận xét : 

 t2 > 0 với mọi t thuộc R

=> t2 - 36 > - 36

=> B > - 36

=> Giá trị nhỏ nhất của B là - 36

Dấu = xảy ra khi : t2 = 0

                        => t = 0

                  mà t = x2 + 5x

                         => x2 + 5x = 0

                          => x ( x + 5 ) = 0

                        => \orbr{x=0x+5=0\orbr{x=0x+5=0

                        => \orbr{x=0x=5\orbr{x=0x=−5

Vậy giá trị nhỏ nhất của B là - 36 khi x{0;5}x∈{0;−5}

c )  C = x2 - 2x + y2 - 4y + 7

            = ( x2 - 2x + 1 ) +  ( y2 - 4y + 4 )  + 2

            = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét : 

( x - 1 )2 > 0 với mọi x thuộc R

( y - 2 )2 > 0 với mọi y thuộc R

=> ( x - 1 )2 + ( y - 2 )2 > 0

=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2

=> C > 2

=> Giá trị nhỏ nhất của C là 2

Dấu = xảy ra khi : \hept{(x1)2=0(y2)2=0\hept{(x−1)2=0(y−2)2=0

                           => \hept{x1=0y2=0\hept{x−1=0y−2=0

                            => \hept{x=1y=2\hept{x=1y=2

Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2

\(A=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\\ A=100+99+99+98+...+2+1\\ A=\left(100+1\right)\left(100-1+1\right):2=5050\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^1-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\\ B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\\ B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1=2^{128}-1+1=2^{128}\)

\(C=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\\ C=2c^2\)

Cũa mị:>>>

21 tháng 3 2022

Tham khảo ạ !!!

A = 1002 - 992 + 982 - 972 + ...... + 22 - 12

= ( 100 - 99 ) ( 100 + 99 ) + ( 98 - 97 ) ( 98 + 97 ) + ......... + ( 2 - 1 ) ( 2 + 1 )

= 1 + 2 + 3 + ......... + 99 + 100

= ( 100 + 1 ) . 100 : 2 = 5050 

 B = 3 ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 12

= ( 22 - 1 ) ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 24 - 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 28 - 1 ) ( 28 + 1 ) ... ( 264 + 1 ) + 1

= ( 216 - 1 ) ( 216 + 1 ) ... ( 264 + 1 ) + 1

= ( 232 - 1 ) ( 232 + 1 ) ( 264 + 1 ) + 1

= ( 264 - 1 ) ( 264 + 1 ) + 1

= 2128 - 1 + 1 

= 2128

C = ( a + b + c )2 + ( a + b - c )2 - 2 ( a + b )2

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2 ( a2 + 2ab + b2 )

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2a2 - 4ab - 2b2

= 2c2

30 tháng 12 2021

Tham khảo ạ :

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5

B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5

B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5

B = 7-5=2

HT 

TL:

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5

B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5

B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5

B = 7-5=2

HT

(đúng & sai cứ lm)

30 tháng 1 2022

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

A = ( 1002 - 992 ) + ( 982 - 972 ) + ... + ( 22 - 12 )

A = ( 100 - 99 )(100 + 99 ) + (98 - 97 )(98 + 97) + ... + (2-1)(2+1)

A = 199 + 195 + .... + 3

Tổng A có ss hạng là:

( 199 - 3 ) : 4 + 1 = 50 ( số )

Tổng A bằng:

( 199 + 3 ) x 50 : 2 = 5050

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

C = a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + b2 + c2 + 2ab - 2bc - 2ac - 2(a2 + 2ab + b2)

C = 2a2 + 2b2 + 2c2 + 4ab - 2a2  -4ab - 2b2

C = 2c2

30 tháng 1 2022

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

B = (22 - 1)(22 + 1)(24 + 1) ... (264 + 1) + 12

B = ( 24 - 1)(24 + 1)... (264 + 1) + 12

B = (28 - 1)... (264 + 1) + 12

B = (28 - 1)(28+1)... (264 + 1) + 12

B = (216-1)(216+1)... (264 + 1) + 12

B = (232 - 1)(232+1)... (264 + 1) + 12

B = (264 - 1)(264 +1)+1

B = 2128 - 1 + 1

B = 2128

1 tháng 4 2021

A = ( x + y )2 + ( x - y )2 + 2( x + y )( x - y )

= ( x + y + x - y )2 = ( 2x )2 = 4x2

B = 3( x - y )2 - 2( x + y )2 - ( x - y )( x + y )

= 3( x2 - 2xy + y2 ) - 2( x2 + 2xy + y2 ) - ( x2 - y2 )

= 3x2 - 6xy + 3y2 - 2x2 - 4xy - 2y2 - x2 + y2

= 2y2 - 10xy

x,y bao nhiêu bạn tự thay vào