11. a. Chứng minh rằng nếu mỗi số tro...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Gọi 3 số nguyên liên tiếp là: a-1, a, a+1 
Giả sử b3= (a - 1)2+a2+(a + 1)2 
= 3a2+2 => chia 3 dư 2 
=> b chia 3 dư 2 => b=3k+2 
=> (3k + 2)3 = 3a+ 2 
=>27k^3+54k^2+36k+8=3a^2+2 
=>a2 = 9k(k+1)2+(3k+2) 
NX: ta có vế trái là một số chia 3 dư 2 
Mà vế phải là một số chính phương, nên chia 3 chỉ có 2 khả năng dư 1 hoăc dư 0=> vô lý 
vậy ta có điều cần phải C/m.

8 tháng 8 2016

Gọi 2 số lẻ liên tiếp là 2k−1 và 2k+1, với k là số tự nhiên.

Tổng các bình phương của hai số lẻ liên tiếp là: (2k−1)2+(2k+1)2=4k2−4k+1+4k2−4k+1=8k2+2

Tổng trên chia cho 4 dư 2; Vậy nó không thể là số chính phương (Số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1)

30 tháng 3 2017

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m\(\in\)N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương .

15 tháng 8 2016

Ta biết một số chính phương hoặc chia hết cho 3 hoặc chia 3 dư 1 
(3k)² = 9k² chia hết cho 3 
(3k+1)² = 9k² + 6k + 1 chia 3 dư 1 
(3k+2)² = 9k² + 12k + 3 + 1 chia 3 dư 1 
----------- 
A = a^2k + (a+1)^2m + (a+2)^2n = (a²)^k + ((a+1)²)^m + ((a+2)²)^n 

a, a+1, a+2 là 3 số nguyên liên tiếp nên có đúng 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 

=> a², (a+1)², (a+2)² có một số chia hết cho 3, 2 số chia 3 dư 1 

=> (a²)^k, ((a+1)²)^m và ((a+2)²)^n có 1 số chia hết cho 3, 2 số chia 3 dư 1 

=> A = (a²)^k + ((a+1)²)^m + ((a+2)²)^n chia 3 dư 2 không thể là số chính phương b² 
(vì b² chia 3 dư 0 hoặc 1) 

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

Vì a,b là các số chẵn nên a,b viết được dưới dạng là a=2m và b=2n(Với m,n∈Z)

Ta có: \(a^2+b^2\)

\(=\left(2m\right)^2+\left(2n\right)^2\)

\(=4m^2+4n^2\)

\(=4\left(m^2+n^2\right)\)

\(=2\left(2m^2+2n^2\right)\)

\(=\left(m^2+n^2+1-m^2-n^2+1\right)\cdot\left(m^2+n^2+1+m^2+n^2-1\right)\)

\(=\left(m^2+n^2+1\right)^2-\left(m^2+n^2-1\right)^2\)

là bình phương của hai số nguyên(đpcm)

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?