B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

Đổi 40' = $\frac{2}{3}$ giờ

Gọi vận tốc xe nhanh là a và xe chậm là b (đơn vị: km/h)

Theo bài ra ta có:

$a+b=400:5=80(1)$ 

Kể từ khi xe nhanh xuất phát, hai xe đi ngược chiều nhau 1 quãng đường có độ dài $400-\frac{2}{3}b$ (km). Hai xe gặp nhau sau $5h22'=\frac{161}{30}$ giờ. Khi đó ta có:

$a+b=(400-\frac{2}{3}b):\frac{161}{30}(2)$

Từ $(1); (2)\Rightarrow (400-\frac{2}{3}b): \frac{161}{30}=80$

$\Rightarrow b=-44$ (km) (vô lý)

16 tháng 1 2022

Gọi vận tốc ô tô khởi hành từ tỉnh A là x (km/h)

Gọi vận tốc ô tô khởi hành từ tỉnh B là y (km/h)

(ĐK: \(x>y>0\) )

Đổi: \(5h22'=\dfrac{161}{30}h,40'=\dfrac{2}{3}h\)

Hai ô tô đi ngược chiều và gặp nhau sau 5h nên ta có phương trình: 

\(5x+5y=400\)

Quãng đường ô tô từ tỉnh A đi được đến lúc gặp nhau là: \(\dfrac{161}{30}x\left(km\right)\)

Quãng đường ô tô từ tỉnh B đi được đến lúc gặp nhau là: \(\dfrac{161}{30}y-\dfrac{2}{3}y=\dfrac{47}{10}y\left(km\right)\)

Do đó ta có phương trình:

\(\dfrac{161}{30}x+\dfrac{47}{10}y=400\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{161}{30}x+\dfrac{47}{10}y=400\\5x+5y=400\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=36\\y=44\end{matrix}\right.\)

Vậy vận tốc ô tô khởi hành từ tỉnh A là 36 (km/h)

Vận tốc ô tô khởi hành từ tỉnh B là 44 (km/h).

16 tháng 1 2022

cảm ơn bạn

 

5h22p-40p=4h42p=4,7h

5h22p=161/30h

Gọi vận tốc xe 1 và xe 2 lần lượt là a,b(a>b)

Theo đề, ta có: 5(a+b)=400 và 161/30b+4,7a=400

=>a=44 và b=36

15 tháng 11 2023

\(40p=\dfrac{2}{3}h;5h22'=\dfrac{161}{30}h\)

Gọi vận tốc xe thứ nhất là x(km/h), vận tốc xe thứ hai là y(km/h)

(Điều kiện: x>0 và y>0)

Hai xe nếu khởi hành cùng lúc thì sẽ gặp nhau sau 5h nên độ dài quãng đường hai xe đi được sẽ là:

5x+5y=400

=>5(x+y)=400

=>\(x+y=\dfrac{400}{5}=80\)

Thời gian xe thứ hai đi từ lúc khởi hành đến chỗ gặp nhau là \(5h22'=\dfrac{161}{30}\left(h\right)\)

Thời gian xe thứ nhất đi từ lúc khởi hành đến chỗ gặp nhau là \(\dfrac{161}{30}-\dfrac{2}{3}=\dfrac{161-20}{30}=\dfrac{141}{30}\left(h\right)\)

Độ dài quãng đường xe thứ nhất đi từ lúc khởi hành đến chỗ gặp là: \(\dfrac{141}{30}x\left(km\right)\)

Độ dài quãng đường xe thứ hai đi từ lúc khởi hành đến chỗ gặp là \(\dfrac{161}{30}y\left(km\right)\)

Tổng độ dài quãng đường hai xe đi được là 400km nên ta có: \(\dfrac{141}{30}x+\dfrac{161}{30}y=400\)

Do đó, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=80\\\dfrac{141}{30}x+\dfrac{161}{30}y=400\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+y=80\\141x+161y=400\cdot30=12000\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}141x+141y=11280\\141x+161y=12000\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-20y=-720\\x+y=80\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=36\\x=44\end{matrix}\right.\left(nhận\right)\)

Vậy: vận tốc xe thứ nhất là 44km/h

vận tốc xe thứ hai là 36km/h

25 tháng 8 2021

\(5x^2+24x+19=0\)

\(\Leftrightarrow5x^2+5x+19x+19=0\)

\(\Leftrightarrow5x\left(x+1\right)+19\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(5x+19\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\5x+19=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{19}{5}\end{cases}}\)

Vậy \(S=\left\{-1;-\frac{19}{5}\right\}\)

Tìm nghiệm của phương trình

 5x^2 + 24x + 19 = 0 

 5x^2 + 5x + 19x + 19 = 0 

5x(x+1 ) ( 5x + 19 ) = 0 

x + 1 = 0 

5x + 19 = 0 

x = -1 

x = -19/5 

vậy S = { -1 ; -19/5 }

9 tháng 2 2021

a) Vì \(\left|A+B\right|\ge0\)và \(\left|A\right|+\left|B\right|\ge0\)

Bình phương 2 vế ta có:

\(\left|A+B\right|^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow A^2+2AB+B^2\le A^2+2\left|AB\right|+B^2\)

\(\Leftrightarrow2\left|AB\right|\ge2AB\)\(\Leftrightarrow\left|AB\right|\ge AB\)(1)

Theo tính chất của dấu giá trị tuyệt đối thì \(\left|AB\right|\ge AB\)

\(\Rightarrow\)(1) luôn đúng \(\Rightarrow\left|A+B\right|\le\left|A\right|+\left|B\right|\)( đpcm )

Dấu " = " xảy ra \(\Leftrightarrow AB\ge0\)

b) \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|x-3\right|=\left|x+2\right|+\left|3-x\right|\)

Áp dụng kết quả phần a ta có: 

\(M=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=\left|5\right|=5\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x+2\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\Leftrightarrow-2\le x\le3\)

TH2: \(\hept{\begin{cases}x+2< 0\\3-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( vô lý )

Vậy \(minM=5\)\(\Leftrightarrow-2\le x\le3\)

9 tháng 2 2021

a) Do 2 vế của BĐT không âm nên ta có:

\(\left|A+B\right|\le\left|A\right|+\left|B\right|\Leftrightarrow\left|A+B\right|^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow A^2+B^2+2AB\le A^2+B^2+2\left|AB\right|\Leftrightarrow AB\le\left|AB\right|\) (LUÔN ĐÚNG)

Dấu '=' xảy ra <=> \(AB\ge0\)

6 tháng 7 2018

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Gọi vận tốc của xe nhanh là x km/h

Gọi vận tốc của xe chậm là y km/h (điều kiện: x> y > 0)

Hai xe cùng khởi hành một lúc và đi ngược chiều sau 5h gặp nhau nên ta có phương trình

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy vận tốc của xe nhanh là 44 km/h

Vận tốc của xe chậm là 36 km/h.

gọi vận tốc xe chậm và nhanh là x,y (km/h) với x,y>0

→độ dài AB:5x+5y=400

nếu xe chậm xuất phát trước 40p thì 2 xe gặp nhau sau 5h22p

→thời gian xe chậm đi là :5h22p=161/30h

Thời gian xe nhanh đi:5h22p -40p =4h42p =47/10h

→Độ dài AB :161/30x  +47/10y=400

theo bài ra ta có hệ:  5x+5y=400   và  161/30x  +47/10y=400

                              →   x+y=80       và  161x+141y=12000

                              →x=36  ,y=44 (km/h)

=>A

Bài 1. Bài 2:  Với a/ Rút gon b/ Với giá tri nào của x thì P có giá tri bằng c/ Tính giá tri của P tại Bài 3. (2 điểm) Cho đường thẳng (d): y = (m + 4)x - m + 6 (m là tham số)a) Tìm m để đường thẳng (d) đi qua điểm A(-1; 2).b) Vẽ đường thẳng (d) với giá trị tìm được của m ở câu a).c) Tìm m để đường thẳng (d) song song với đường thẳng y = -2x + 3.d) CMR: Khi m thay đổi thì đường thẳng (d)...
Đọc tiếp

Bài 1. 

a) 2 \sqrt{5}+\sqrt{(1-\sqrt{5})^{2}}

b) 2 \sqrt{2}+\sqrt{18}-\sqrt{32} \quad

c/ \frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2 \sqrt{3}

Bài 2: 

\mathrm{P}=\left(\frac{1}{\sqrt{\mathrm{x}}-1}-\frac{1}{\sqrt{\mathrm{x}}}\right):\left(\frac{\sqrt{\mathrm{x}}+1}{\sqrt{\mathrm{x}}-2}-\frac{\sqrt{\mathrm{x}}+2}{\sqrt{\mathrm{x}}-1}\right) Với \mathrm{x}>0 ; \mathrm{x} \neq 1 ; \mathrm{x} \neq 4)

a/ Rút gon \mathrm{P}.

b/ Với giá tri nào của x thì P có giá tri bằng \frac{1}{4}

c/ Tính giá tri của P tại x = 4 + 2 \sqrt{3}

Bài 3. (2 điểm) Cho đường thẳng (d): y = (m + 4)x - m + 6 (m là tham số)

a) Tìm m để đường thẳng (d) đi qua điểm A(-1; 2).

b) Vẽ đường thẳng (d) với giá trị tìm được của m ở câu a).

c) Tìm m để đường thẳng (d) song song với đường thẳng y = -2x + 3.

d) CMR: Khi m thay đổi thì đường thẳng (d) luôn đi qua một điểm cố định.

Bài 4. (4,5 điểm) Cho nửa (O), đường kính AB = 2R và dây AC = R.

a) Chứng minh rABC vuông

b) Giải rABC.

c) Gọi K là trung điểm của BC. Qua B vẽ tiếp tuyến Bx với (O), tiếp tuyến này cắt tia OK tại D. Chứng minh DC là tiếp tuyến của (O).

d) Tia OD cắt (O) ở M. Chứng minh OBMC là hình thoi.

e) Vẽ CH vuông góc với AB tại H và gọi I là trung điểm của CH. Tiếp tuyến tại A của (O) cắt tia BI tại E. Chứng minh E, C, D thẳng hàng.

0
11 tháng 3 2021

Gọi thời gian dự định đi từ A đến B là x ( giờ) ( x>0)

=> quãng đường AB : 12x

1h20'=1/3=4/3h

Theo bài ra, ta có pt:

\(\frac{1}{3}.\frac{12x}{2}+\frac{20}{60}+\frac{2}{3}.\frac{12x}{36}=x-\frac{4}{3}\)

giải ra được \(x=\frac{15}{4}\) (giờ)

Vậy độ dài quãng đường AB : 12.\(\frac{15}{4}=45\left(km\right)\)

 gọi vận tốc xe chậm và nhanh là x,y (km/h) với x,y>0

→độ dài AB:5x+5y=400

nếu xe chậm xuất phát trước 40p thì 2 xe gặp nhau sau 5h22p

→thời gian xe chậm đi là :5h22p=161/30h

Thời gian xe nhanh đi:5h22p -40p =4h42p =47/10h

→Độ dài AB :161/30x  +47/10y=400

Theo bài ra ta có hệ:  5x+5y=400   và  161/30x  +47/10y=400

                              →   x+y=80       và  161x+141y=12000

                              Vậy : x=36  ,y=44 (km/h)

gọi vận tốc xe chậm và nhanh là x,y (km/h) với x,y>0

→độ dài AB:5x+5y=400

nếu xe chậm xuất phát trước 40p thì 2 xe gặp nhau sau 5h22p

→thời gian xe chậm đi là :5h22p=161/30h

Thời gian xe nhanh đi:5h22p -40p =4h42p =47/10h

→Độ dài AB :161/30x  +47/10y=400

theo bài ra ta có hệ:  5x+5y=400   và  161/30x  +47/10y=400

                              →   x+y=80       và  161x+141y=12000

                              →x=36  ,y=44 (km/h)