Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có thế mà cũng nhầm nhưng 1 điều mình mới học lớp 5 nên không thể trả lời câu hỏi của lớp 7
* Chú ý: Mk làm đại nên cx k bik đúng hay sai nx
Giải:
Ta có: \(\overline{X}\) = \(\frac{5.n+6.5+9.2+10.1}{n+5+2+1}\)
Thay: 6,8 = \(\frac{5.n+6.5+9.2+10.1}{n+5+2+1}\)
= \(\frac{5n+58}{n+8}\)
-> 6,8 (n+8) = 5n + 58
6,8 . 8 + 8n = 58 + 5n
54,4 + 8n = 5n + 58
=> 8n - 5n = 58 - 54,4
3n = 3,6
=>> n = 3,6 : 3
Vậy n = 1,2
a) Ta có x1 = 1 có tần số n1 = 2100 (lớn nhất)
=> Mốt của bảng phân bố đã cho là: Mo = 1
b) Trong sản xuất, nhà máy nên ưu tiên cho mẫu số 1
a) Trong bảng phân bố trên, giá trị (tiền lương) 700 (nghìn đồng) và 900 (nghìn đồng) có cùng tần số bằng nhau và lớn hơn các tân số của các giá trị khác. Bảng phân bố này có hai số mốt là:
M1 = 700, M2 = 900.
b) Ý nghĩa: Tỉ lệ công nhân có mức lương 700 nghìn đồng và 900 nghìn đồng cao hơn tỉ lệ công nhân có các mức lương khác.i
\(\overline{x}=\dfrac{n_1x_1+n_2x_2+...+n_nx_n}{N}=\dfrac{3.5+5.8+7.8+8.5+9.4}{30}\simeq6,2\) vậy thời gian làm bài trung bình của các học sinh là \(6,2\)
Câu 8:
$(x-1)(2+x)>0$ thì có 2 TH xảy ra:
TH1: \(\left\{\begin{matrix} x-1>0\\ x+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ x>-2\end{matrix}\right.\Rightarrow x>1\)
TH2: \(\left\{\begin{matrix} x-1< 0\\ x+2< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 1\\ x< -2\end{matrix}\right.\Rightarrow x< -2\)
Vậy $x\in (1;+\infty)$ hoặc $x\in (-\infty; -2)$
Câu 7:
$|x^2+x-12|=|(x-3)(x+4)|$
Nếu $x\geq 3$ thì $(x-3)(x+4)\geq 0$
$\Rightarrow |x^2+x-12|=x^2+x-12$
BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)
Nếu $3> x> -4(1)$ thì $(x-3)(x+4)< 0$
$\Rightarrow |x^2+x-12|=-(x^2+x-12)$
BPT trở thành: $-(x^2+x-12)< x^2+x+12$
$\Leftrightarrow 2(x^2+x)>0\Leftrightarrow x>0$ hoặc $x< -1$
Kết hợp với $(1)$ suy ra $3>x>0$ hoặc $-1> x> -4$
Nếu $x\leq -4$ thì $(x-3)(x+4)\geq 0$
$\Rightarrow |x^2+x-12|=x^2+x-12$
BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)
Vậy BPT có nghiệm $x\in (+\infty; 0)$ hoặc $x\in (-\infty; -1)$