Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc thực của cano là x (km/h, x > 0), vận tốc dòng nước là y (km/h, 0 < y < x)
Vận tốc cano khi xuôi dòng là x + y (km/h), vận tốc cano khi ngược dòng là: x – y (km/h)
Cano chạy trên sông trong 7 giờ, xuôi dòng 108 km và ngược dòng 63 km nên ta có phương trình
108 x + y + 63 x − y = 7
Cano chạy trên sông trong 7 giờ, xuôi dòng 81 km và ngược dòng 84 km nên ta có phương trình:
81 x + y + 84 x − y = 7
Ta có hệ phương trình
108 x + y + 63 x − y = 7 81 x + y + 84 x − y = 7 ⇔ 432 x + y + 252 x − y = 28 243 x + y + 252 x − y = 21 ⇔ 432 x + y + 252 x − y − 243 x + y + 252 x − y = 28 − 21 81 x + y + 84 x − y = 7 ⇔ 189 x + y = 7 81 x + y + 84 x − y = 7 ⇔ x + y = 27 81 27 + 84 x − y = 7 ⇔ x + y = 27 84 x − y = 4 ⇔ x + y = 27 x − y = 21 ⇔ x + y + x − y = 27 + 21 x + y = 27 ⇔ 2 x = 48 y = 27 − x ⇔ x = 24 y = 27 − 24 ⇔ x = 24 y = 3
(thỏa mãn)
Vậy vận tốc dòng ngước là 3 km/h
Đáp án: B
Vận tốc cano khi xuôi dòng là x+y (km/h) và vận tốc cano khi ngược dòng là x-y(km/h)
( Trong đó x và y lần lượt là vận tốc cano và vận tốc dòng nước )
Theo đề bài ta có: \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\left(1\right)\) (cả xuôi cả về hết 7h)
Tương tự ta cũng có: \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)
từ (1) và (2) Ta có hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)
Đặt 1/x+y = a và 1/x-y = b
hệ viết lại thành: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{x+y}=\dfrac{1}{27}\\b=\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)
Vậy......
Gọi tốc độ của ca nô khi dòng nước đứng yên là x (km/h) và tốc độ dòng nước là y (km/h).
Khi đó vận tốc của ca nô khi xuôi dòng là x+y(km/h) và tốc độ của ca nô khi ngược dòng là x–y(km/h)
Lần thứ nhất:
Thời gian ca nô xuôi dòng là \(\dfrac{108}{x+y}\left(h\right)\)
Thời gian ca nô ngược dòng là \(\dfrac{63}{x-y}\left(h\right)\)
Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\) (1)
Lần thứ hai:
Thời gian ca nô xuôi dòng là \(\dfrac{81}{x+y}\)(h)
Thời gian ca nô ngược dòng là \(\dfrac{84}{x-y}\left(h\right)\)
Vì ca nô xuôi dòng 108 km, rồi ngược dòng 63 km, mất 7 giờ nên ta có phương trình \(\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:=> \(\left\{{}\begin{matrix}\dfrac{108}{x+y}+\dfrac{63}{x-y}=7\\\dfrac{81}{x+y}+\dfrac{84}{x-y}=7\end{matrix}\right.\)
Đặt \(a=\dfrac{1}{x+y};b=\dfrac{1}{x-y}\) \(\left(x,y\ne0\right)\)
Ta có: \(\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}324a+189b=21\\324a+336b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-147b=-7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+84.\dfrac{1}{21}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a+4=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a=\dfrac{1}{27}\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{27}\\\dfrac{1}{x-y}=\dfrac{1}{21}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-y-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\27-2y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27-y\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)
Vậy tốc độ của ca nô khi dòng nước đứng yên là 24km/h và tốc độ của dòng nước là 3km/h.
1. gọi vận tốc dòng nước là v, thoi gian di xuoi la 44/20+v thoigian di nguoc la 27/20-v ta co pt;
44/20+v + 27/20-v = 3h30p = 3,5
v = 2km/h
bai 2 chị tự làm đi, nếu k lamdc 1h nua em lam
Bài 15:
Gọi x(hộp bánh) và y(hộp bánh) lần lượt là số hộp bánh mà người thứ nhất và người thứ hai phải đóng được(Điều kiện: \(x,y\in Z^+\))
Vì theo kế hoạch hai người phải đóng được 800 hộp bánh nên ta có phương trình:
x+y=800(1)
Số hộp bánh người thứ nhất đóng được khi vượt mức 20% là:
\(x+\dfrac{1}{5}x=\dfrac{6}{5}x\)
Số hộp bánh người thứ hai đóng được khi vượt mức 15% là:
\(y+\dfrac{3}{20}y=\dfrac{23}{20}y\)
Theo đề, ta có: \(\dfrac{6}{5}x+\dfrac{23}{20}y=945\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=800\\\dfrac{6}{5}x+\dfrac{23}{20}y=945\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{5}x+\dfrac{6}{5}y=960\\\dfrac{6}{5}x+\dfrac{23}{20}y=945\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{20}y=15\\x+y=800\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15:\dfrac{1}{20}=300\\x=800-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=800-300\\y=300\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=500\\y=300\end{matrix}\right.\)(thỏa ĐK)
Vậy: Theo kế hoạch, người thứ nhất phải đóng 500 hộp bánh
Theo kế hoạch, người thứ hai phải đóng 300 hộp bánh
gọi vận tốc cano và dòng nước lần lượt là x,y ( ĐK: x, y > 0 )
vận tốc thực của cano khi xuôi dòng : x+ y
vận tốc thực của ca nô khi ngược dòng : x-y
tổng thời gian ca no đi xuôi 84 km và ngược dòng 44 km là 5h nên ta có pt:
\(\frac{84}{x+y}\) + \(\frac{44}{x-y}\) = 5
tương tự với giả thiết còn lại, ta có : \(\frac{112}{x+y}+\frac{110}{x-y}=9\)
Như vậy ta có hệ pt :.... ( bạn biết phải không ? )
đặt ẩn phụ cho \(\frac{1}{x+y}\) và \(\frac{1}{x-y}\) , ta có hệ pt thứ 2 là : x+y = 28 và x-y = 22 <=> x =25 và y =3
Vậy ....
Gọi vận tốc riêng của cano là x(km/h) và vân tốc riêng của dòng nước là y (km/h) với x>0,y>0
Vận tốc cano khi xuôi dòng: \(x+y\) (km/h)
Vận tốc cano khi ngược dòng: \(x-y\) (km/h)
Do cano xuôi dòng 84km và ngược dòng 50km hết 5h30 phút =11/2 giờ nên ta có:
\(\dfrac{84}{x+y}+\dfrac{50}{x-y}=\dfrac{11}{2}\)
Do cano xuôi dòng 56km và ngược dòng 60km hết 6h nên:
\(\dfrac{56}{x+y}+\dfrac{60}{x-y}=6\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{84}{x+y}+\dfrac{50}{x-y}=\dfrac{11}{2}\\\dfrac{56}{x+y}+\dfrac{60}{x-y}=6\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}84u+50v=\dfrac{11}{2}\\56u+60v=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{3}{224}\\v=\dfrac{7}{80}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=\dfrac{224}{3}\\x-y=\dfrac{80}{7}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{904}{21}\\y=\dfrac{664}{21}\end{matrix}\right.\)