K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

Ta có:

\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)

\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)

Từ (1) và (2) suy ra:

\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)

Suy ra: \(4n-5⋮99\)

Ta có: \(100\le n^2-1\le999\)

\(\Leftrightarrow101\le n^2\le1000\)

\(\Leftrightarrow11\le n\le31\)

\(\Leftrightarrow44\le4n\le124\)

\(\Leftrightarrow39\le4n-5\le119\)

Suy ra: \(4n-5=99\)

Suy ra: \(n=26\)

Suy ra: \(\overline{abc}=26^2-1=675\)

 
25 tháng 5 2015

sao ging ho dai ca biết có lẽ cũng xem ở đó hả

25 tháng 5 2015

 bổ đề: " Một số chính phương a^2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4 " 

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 

p/s: theo lời giải trên ta thấy có thể mở rộng bào toán cho trường hợp p và q là "các số nguyên" chứ không cần là số nguyên tố

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)