K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác)(1)

Xét ΔABC có 

CE là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(Tính chất tia phân giác)(2)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)

Xét ΔABC có

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)(cmt)

nên ED//BC(Định lí Ta lét đảo)

Xét tứ giác BEDC có ED//BC(cmt)

nên BEDC là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang BEDC(ED//BC) có \(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)

nên BEDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Ta có: \(\widehat{EDB}=\widehat{DBC}\)(ED//BC)

mà \(\widehat{DBC}=\widehat{EBD}\)(BD là tia phân giác)

nên \(\widehat{EDB}=\widehat{EBD}\)

Xét ΔEBD có \(\widehat{EDB}=\widehat{EBD}\)(cmt)

nên ΔEBD cân tại E(Định nghĩa tam giác cân)

hay ED=EB(đpcm)

21 tháng 8 2023

Cho ai ko đọc đc câu hỏi thì:

a) cmr tam giác ABD = tam giác AEC

B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên

C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE

a: Xét ΔABD và ΔACE có

góc ABD=góc ACE

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b:ΔABD=ΔACE

=>AD=AE

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

Xét tứ giác BEDC có

DE//BC

góc EBC=góc DCB

=>BEDC là hình thang cân

ED//BC

=>góc EDB=góc DBC

=>góc EDB=góc EBD

=>ED=EB

BEDC là hình thang cân

=>EB=DC

=>EB=ED=DC

c: góc EBC=góc DCB=(180-40)/2=70 độ

góc BED=góc EDC=180-70=110 độ

3 tháng 7 2018

A B C E D 1 2 1 2

a, Ta có: góc ABC=góc ACB (t/g ABC cân tại A)

=> góc ABC/2 = góc ACB/2

=>góc B1 = góc B2 = góc C1 = góc C2 

Xét t/g ADB và t/g AEC có:

góc B1 = góc C1 (cmt)

AB=AC (t/g ABC cân tại A)

góc A chung

=>t/g ADB = t/g AEC (g.c.g)

b, Vì t/g ADB = t/g AEC (câu a) => BD=CE (*), AE=AD

=> t/g AED cân tại A

=> góc AED = góc ADE = \(\frac{180^o-\widehat{A}}{2}\)  (1)

Mà góc ABC=góc ACB = \(\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) => góc AED = góc ABC 

Mà góc AED và góc ABC là cặp góc đồng vị 

=> ED // BC (**)

Từ (*) và (**) => BEDC là hình thang cân

c, Vì BEDC là hình thang cân => BE=DC (3)

Từ (**) => góc EDB = góc B2 (so le trong)

Mà góc B1 = góc B2 (gt)

=>góc EDB = góc B1

=>t/g BED cân tại E

=>BE=ED (4)

Từ (3),(4) => BE=ED=DC

P/s: hình chỉ mang tính chất minh họa :v

4 tháng 7 2018

ai  giúp mình câu e với ạ

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.a)Tính các đoạn EB, EC.b) Chứng minh:  SABE/SACE = AB/AC.c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.a)Hãy viết tỉ lệ thức trong trường hợp trên .b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ...
Đọc tiếp

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.

a)Tính các đoạn EB, EC.

b) Chứng minh:  SABE/SACE = AB/AC.

c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.

Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.

a)Hãy viết tỉ lệ thức trong trường hợp trên .

b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ thức trong trường hợp này.

c)Gọi BE là phân giác góc B , hãy viết tỉ lệ thức từ phân giác này .

d) Dựa vào các kết quả trên , chứng minh rằng: DB/DC. FB/FA. EA/EC = 1.

Bài 4. Cho tam giác ABC vuông tại A có AD là phân giác góc A . Kẻ DE // AC ( E  thuộc AB ). Biết AB = 21cm , AC = 28cm.

Tính độ dài các đoạn DB , DC và DE

Bài 5. Cho tam giác DEF có trung tuyến DM . Đường phân giác góc DME cắt DE tại G , đường phân giác góc DMF cắt DF tại H .

 a)Chứng minh rằng: GE/GD = HF/HD

b) Xác định vị trí của GH và EF ?

 

0
12 tháng 12 2023

chịu :))
 

1 tháng 10 2021

a. Ta có \(M,D\) đối xứng qua \(AB\)

\(\rightarrow AD=AM\)

Lại có \(M,E\)  đối xứng qua  \(AC\rightarrow AM=AE\)

\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN

b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)

\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)

Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)

Mà \(\Delta ADE\) cân tại \(A\)

\(\rightarrow\widehat{ADE}=\widehat{AED}\)

\(\rightarrow\widehat{IMA}=\widehat{KMA}\)

 \(\rightarrow MA\) là phân giác \(\widehat{IMK}\)
c. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)
Tương tự \(\widehat{MAE}=2\widehat{MAC}\)
\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)
\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)
\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)
 
10 tháng 1 2021

Cái hình mình vẽ tương đôi thôi, bạn cứ coi như là nó đều đi ha :))))

undefined