Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(n=0\Rightarrow n^3-n=0⋮6\)
\(\forall n\inℕ^∗,n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì (n-1), n, (n+1) là 3 số tự nhiên liên tiếp nên sẽ có ít nhất 1 số chẵn và 1 số chia hết cho 3---> Tích của chúng chia hết cho 6
Vậy mệnh đề đúng.
Mệnh đề phủ định: \(\exists n\inℕ,n^3-n⋮6\)
Mệnh đề sau sai
Vì khi x = 1 thì :
VT = \(\frac{1^2-1}{1-1}=\frac{0}{0}\) ( không có phép chia cho 0 )
Phủ định của mệnh đề :
\(\forall x\in R\backslash\left\{1\right\};\frac{x^2-1}{x-1}=x+1\) là mệnh đề đúng
Mệnh đề đúng.
Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)
Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)
\(\left(2n-1\right)^2-1\)
\(=4n^2-4n+1-1\)
\(=4n^2-4n\)
\(=4n\left(n-1\right)⋮4\forall n\)
Vậy mệnh đề trên đúng
Mệnh đề phủ định của mệnh đề trên
\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4
\(\overline{P}:"\exists x\in R:x^2-x+3\le0"\)
Mệnh đề \(\overline{P}\) sai vì \(x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\) \(\forall x\in R\)
a) Mệnh đề sai, vì chỉ có \(x = - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.
b) Mệnh đề đúng, vì \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”
c) Mệnh đề sai, vì có \(a = - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}} = 2 \ne a\)
Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}} \ne a\)”.
a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).
b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} > 2.2 - 1\) hay \(4 > 3\) (luôn đúng).
c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).
d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.
a) ta có \(1^2< 2.1\) \(\Rightarrow\) mệnh đề này sai
mệnh đề phủ định là : \(\exists x\in N,x^2< 2x\)
b) ta có : \(x=1\) không thỏa mãn bài toán \(\Rightarrow\) mệnh đề này sai
mệnh đề phủ định : \(\exists x\in Z,x^2-x-1\ne0\)
câu b này mk nghỉ đề sai rồi phải không , nêu đúng thì chắc là zầy
đề đúng của câu b : \(\forall x\in Z,x^2-x-1\ne0\)
bài lm :
ta có phương trình \(x^2-x-1=0\) có 2 nghiệm \(x=\dfrac{1\pm\sqrt{5}}{2}\notin Z\)
\(\Rightarrow\) mệnh đề trên là đúng
mệnh đề phủ định : \(\exists x\in Z,x^2-x-1=0\)
a) Mệnh đề \(\forall x\in\mathbb{N},x^2\ge2x\) sai vì có \(x=1\in\mathbb{N}\) mà \(1^2< 2.1\). Mệnh đề phủ định: \(\exists x\in\mathbb{N},x^2< 2x\).
b) Mệnh đề " \(\forall x\in\mathbb{Z},x^2-x-1=0\)" sai vì có số nguyên \(x=0\) mà \(x^2-x-1=-1\ne0\). Mệnh đề phủ định:
\(\exists x\in\mathbb{Z},x^2-x-1\ne0\).
Chú ý: Mệnh đề nói ở b) nếu sửa thành " \(\forall x\in\mathbb{Z},x^2-x-1\ne0\)" thì đây là mệnh đề đúng, điều này có thể chứng minh như sau:
- Với \(x\le-1\) thì \(x^2\ge1,-\left(x+1\right)\ge0\Rightarrow x^2-\left(x+1\right)\ge1\Rightarrow x^2-x-1\ne0\)
- Với \(x\ge2\) thì \(x^2-x=x\left(x-1\right)\ge2.1\Rightarrow x^2-x-1\ge1\)\(x^2-x-1\ge1\Rightarrow x^2-x-\ne0\)
- Với \(x=0,x=1\) thử trực tiếp thấy \(x^2-x-1\ne0\)
Bài 1:
a/ Với \(x=0\Rightarrow0-0+1>0\) đúng
Vậy mệnh đề đúng
Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)
Hoặc: \(∄x\in R,x^3-x^3+1>0\)
b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Vậy mệnh đề đã cho là đúng
Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Câu 2:
a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)
\(\Rightarrow\) Mệnh đề sai
b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)
\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)
Câu 3:
P là mệnh đề đúng
\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"
\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"
\(\overline{P}\) là mệnh đề sai
Chứng minh P đúng:
Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\) và \(b\ne0\)
\(\Rightarrow2x=\frac{2a}{b}\)
Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ
b/ Mệnh đề đảo của P:
" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"
Chứng minh tương tự như trên
c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"
Bài 4:
a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)
b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)
E mới c2 nên cg ch am hiểu lắm nên thôi lm đại nhé:))
Ta có: \(x^2+xy+y^2=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\left(\forall x,y\right)\)
Vì nếu \(x=y=0\) => \(x^2+xy+y^2=0\)
=> Mệnh đề sai
Chỉ đúng ở phần không âm