Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tìm được \(A\left(0:3\right);B\left(0:7\right)\)
\(\Rightarrow I\left(0;5\right)\)
2) Hoành độ giao điểm J của \(\left(d_1\right)\)và\(\left(d_2\right)\)là nghiệm của \(PT:x+3=3x+7\)
\(\Rightarrow x=-2\Rightarrow y_J=1\Rightarrow J\left(-2;1\right)\)
\(\Rightarrow OI^2=0^2+5^2=25\)
\(\Rightarrow OJ^2=2^2+1^2=5\)
\(\Rightarrow IJ^2=2^2+4^2=20\)
\(\Rightarrow OJ^2+IJ^2=OI^2\Rightarrow\Delta OIJ\)LÀ TAM GIÁC VUÔNG TẠI J
\(\Rightarrow S_{\Delta OIJ}=\frac{1}{2}OI.OJ=\frac{1}{2}.\sqrt{5}.\sqrt{20}=5\left(đvdt\right)\)
a: (d1); y=4mx-(m+5)
=m(4x-1)-5
Điểm mà (d1) luôn đi qua có tọa độ là:
4x-1=0 và y=-5
=>x=1/4 và y=-5
(d2): \(y=\left(3m^2+1\right)x+m^2-4\)
=3m^2x+3x+m^2-4
=m^2(3x+1)+3x-4
ĐIểm mà (d2) luôn đi qua có tọa độ là:
3x+1=0 và y=3x-4
=>x=-1/3 và y=-1-4=-5
b: A(1/4;-5); B(-1/3;-5)
\(AB=\sqrt{\left(-\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(-5+5\right)^2}=\dfrac{7}{12}\)
c: Để hai đường song song thì
\(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-4+m+5< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(3m-1\right)=0\\m^2+m+1< >0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\)