K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

\(A=\frac{3x8x15x24x.....x899}{4x9x16x25x.....x900}\)

25 tháng 5 2016

A=3/4x8/9x15/16x24/25x...x899/900

A=1.3/22 x 2.4/33 x 3.5/42 x 4.6/55 x ... x 29.31/302

A=1.2.3.4...29/2.3.4.5...30 x 3.4.5.6...31/2.3.4.5...30

A=1/30 x 31/2

A=31/60

23 tháng 2 2017

Ta có: A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{899}{900}\)

\(\Leftrightarrow A=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}....\frac{29.31}{30^2}\)

\(\Leftrightarrow A=\frac{1.2.3.4...29}{2.3.4.5...30}.\frac{3.4.5.6...31}{2.3.4.5...30}\)

\(\Leftrightarrow A=\frac{1}{30}.\frac{31}{2}\)

\(\Leftrightarrow A=\frac{1.31}{30.2}\)

\(\Leftrightarrow A=\frac{31}{60}\)

6 tháng 3 2017

~ So sad :( !! ~

\(A=\frac{31}{60}\)

I thinks so ! Sad

26 tháng 2 2017

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{889}{900}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29\cdot31}{30.30}\)

\(=\frac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4....30.30}\)

\(=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4....30\right)\left(2.3.4.....30\right)}\)

\(=\frac{1.31}{30.2}=\frac{31}{60}\)

12 tháng 3 2017

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{29.31}{30.30}\)

\(=\frac{1.2.3....29}{2.3.4....30}.\frac{3.4.5....31}{2.3.4....30}\)

\(=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)

12 tháng 3 2017

\(A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{29\cdot31}{30\cdot30}\)

\(A=\frac{1\cdot2\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\frac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}=\frac{1}{30}\cdot\frac{31}{2}=\frac{31}{60}\)

18 tháng 2 2017

\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{899}{900}\)

\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times...\times\frac{29.31}{30.30}\)

\(=\frac{\left(1\times2\times3\times...\times29\right)\left(3\times4\times5\times...\times31\right)}{\left(2\times3\times4\times...\times30\right)\left(2\times3\times4\times...\times30\right)}\)

\(=\frac{1\times2\times3\times...\times29}{2\times3\times4\times...\times30}.\frac{3\times4\times5\times...\times31}{2\times3\times4\times...\times30}\)

\(=\frac{1}{30}.\frac{31}{2}\)

\(=\frac{31}{60}\)

19 tháng 2 2017

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{29.31}{30.30}\\ =\frac{1.2.3.4....29}{2.3.4...30}.\frac{3.4.5...31}{2.3.4...30}\\ =\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)

.

23 tháng 2 2017

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{899}{900}\)

\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}....\frac{29.31}{30.30}\)

\(A=\frac{1.2.3.4....29}{2.3.4....30}.\frac{3.4.5.6...31}{2.3.4...30}\)

\(A=\frac{1}{30}.\frac{31}{2}\) (Rút gọn theo chiều /// và \\\ nhé)

\(A=\frac{31}{60}\)

Chúc học tốt!~~

6 tháng 5 2016

A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.........\frac{899}{900}\)

A=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}..........\frac{29.31}{30.30}\)

A=\(\frac{1.2.3.......29}{2.3.4.......30}.\frac{3.4.5........31}{2.3.4.......30}\)

A=\(\frac{1}{30}.\frac{2}{31}=\frac{1}{465}\)

7 tháng 5 2017

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)

\(A=29-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\right)\)

đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)

Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2}\)\(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); ... ; \(\frac{1}{30^2}< \frac{1}{29.30}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)

\(=1-\frac{1}{30}< 1\)

\(\Rightarrow B< 1\)

\(\Rightarrow A=29-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\right)< 29\)