Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -4x2 + 8x - 4
= - (4x2 - 8x + 4)
= - (2x - 2)2
b) -x52 + 10 x - 5
= - 5(x2 - 2x + 1)
= - 5(x - 1)2
\(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^3.\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
cảm ơn bạn nhiều, không biết còn cách không? Mong nhận đượ giúp đỡ!
\(\left(x^2+x\right)^2-2x^2-2x-15\)
\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)
\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)
\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)
đặt \(x^2+x=t\)
\(\left(1\right)\)\(=\) \(t^2-2t-15\)
\(=\left(t-1\right)^2-16\)
\(=\left(t-1-4\right)\left(t-1+4\right)\)
\(=\left(t-5\right)\left(t+3\right)\)
thay \(t=x^2+x\) ta có
\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
các câu còn lại tương tự nha
học tốt
bạn ơi hình như sai đề thì phải a bạn mình nghĩ phải là \(\left(x^2-x+2\right)^2\)
\(\left(x^2-x+2\right)+\left(x-2\right)^2=\left(x^2-x+2\right)+x^2-2^2\)
\(=x^2-x+2+x^2-2^2\)\(=\left(x^2+x^2\right)+\left(2-2^2\right)-x\)
\(=2x^2-\left(2-4\right)-x=2x^2-\left(-2\right)-x\)
\(=2x^2+2-x=2x^2+2.1-x=2\left(x^2+1\right)-x\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x=t\)
\(\left(t+10\right)\left(t+12\right)-8=t^2+22t+120-8\)
\(=t^2+22t+112=\left(t+8\right)\left(t+14\right)\)
Theo cách đặt \(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
a) x\(^2\)+8x +15
=( x\(^2\)+3x) + ( 5x +15)
= x(x+3)+ 5 (x+3)
=(x+3) (x+5)
b)x\(^2\)-4x-12
=( x\(^2\)- 6x) +( 2x -12)
=x(x-6) + 2 (x-6)
=(x - 6) (x+2)
c)9x\(^2\)-6x-24
=(9x\(^2\)-18x)+ (12x-24)
=9x(x-2) + 12 (x -2 )
=(x-2) (9x+12)
a) \(x^2+8x+15\)
\(=x^2+8x+16-1\)
\(=\left(x^2+8x+16\right)-1\)
\(=\left(x+4\right)^2-1\)
\(=\left(x+4-1\right)\left(x+4+1\right)\)
\(=\left(x+3\right)\left(x+5\right)\)
b) \(x^2-4x-12\)
\(=x^2-4x+4-16\)
\(=\left(x^2-4x+4\right)-4^2\)
\(=\left(x-2\right)^2-4^2\)
\(=\left(x-2-4\right)\left(x-2+4\right)\)
\(=\left(x-6\right)\left(x+2\right)\)
c) \(9x^2-6x-24\)
\(=9x^2-6x+1-25\)
\(=\left(9x^2-6x+1\right)-5^2\)
\(=\left(3x-1\right)^2-5^2\)
\(=\left(3x-1-5\right)\left(3x-1+5\right)\)
\(=\left(3x-6\right)\left(3x+4\right)\)
\(5x\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x-1\right)\left(5x-x\right)\)
\(=4x\left(x-1\right)\)
b) \(x^2\left(x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x\right)\)
\(=x\left(x+1\right)\left(x-1\right)\)
c) \(x^2+4y^2+4xy\)
\(=\left(x+2y\right)^2\)
= x^2(X-1) - 4(x^2-2x+1)
=x^2(x-1)-4(x-1)^2
=(x-1)(x^2-4x+4)
=(x-1)(x-2)^2
(x^2-6x+8)(x^2-8x+15)+1
=(x^2-4x-2x+8)(x^2-5x-3x+15)+1
=(x(x-4)-2(x-4))(x(x-5)-3(x-5))+1
=(x-4)(x-2)(x-5)(x-3)+1
=(x-2)(x-5)(x-3)(x-4)+1
=(x^2-7x+10)(x^2-7x+12)+1
Gọi a=x^2-7x+11, ta có
(a-1)(a+1)+1
= a2 - 1 + 1
= a2
= (x2 - 7x + 11)2