K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

6.

Ta có:

IxI+IyI+IzI=(x+y+z)-3=>x+y+z>IxI+IyI+IzI             (1)

Nhận xét IxI>=x;IyI>=y;IzI>=z=>IxI+IyI+IzI>=x+y+z.=>bất đẳng thức (1) không xảy ra.

Vậy khoog tồn tại.

5.

3n+1 chia hết cho 2n+3=>2(3n+1) chia hết cho 2n+3

Ta có 2(3n+1)=6n+2=(6n+9)-7=3(2n+3)-7 chia hết cho 2n+3=>7 chia hết cho 2n+3

=>2n+3 thuộc Ư(7).Chú ý rằng sau khi tìm được x phải thử lại với 3n+1 chia hết cho 2n+3.

 

10 tháng 2 2016

khó quá ghê

30 tháng 6 2018

Bài 1:

bn tham khảo tại link:

Câu hỏi của Suwani Knavera - Toán lớp 6 - Học toán với OnlineMath

chuk bn hok tốt ~

15 tháng 12 2018

đặt: S=2011n+2012n+2013n

Ta có:

\(\hept{\begin{cases}2011^nlẻ\\2012^nchẵn\\2013^nlẻ\end{cases}}\Rightarrow2011^n+2012^n+2013^nchẵn\Rightarrow S⋮2\left(đpcm\right)\)

28 tháng 5 2018

a) Theo bài ra, ta có:

        \(\overline{abbc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)

Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)

\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)

\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)

Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)

Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)

\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)

\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)

\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)

\(\Rightarrow b=45:5=9.\)

                                  Vậy \(a=1;b=9;c=5.\)

b) Theo bài ra, ta có:

     \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)

 Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)      

\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.

     \(2012\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)

\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)

          \(92\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}=4n\left(n\in N\right)\)

\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)

Thay vào, ta được :

      \(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)

 \(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)

\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2

\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5 

\(\Rightarrow A⋮5.\)

Vậy A là một số tự nhiên chia hết cho 5.

\(\)

7 tháng 6 2018

Câu 1 :

Ta thấy: \(1972:a\)dư \(28;2014:a\)dư \(28\)( * )

\(\Rightarrow2014-1972⋮a\)

\(\Rightarrow42⋮a\Leftrightarrow a\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

Từ ( * ) \(\Rightarrow a>28\Rightarrow a=42\)

Vậy \(a=42.\)

Câu 2 :

a. \(3^2S=3^2.\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)

\(\Leftrightarrow9S=3^2+3^4+3^6+3^8+...+3^{2016}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2016}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)

\(\Leftrightarrow8S=3^{2016}-3^0=3^{2016}-1\)

\(\Rightarrow S=3^{2016}-1:8=\frac{3^{2016}-1}{8}\)

Vậy \(S=\frac{3^{2016}-1}{8}.\)

b. \(S=3^0+3^2+3^4+3^6+...+3^{2014}\)

\(\Rightarrow3S=3.\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)

\(\Leftrightarrow3S=3^1+3^3+3^5+3^7+...+3^{2015}\)

Nhận xét: Dãy trên có 1008 lũy thừa nên ta chia thành các nhóm, mỗi nhóm có 3 lũy thừa thì vừa tròn 336 nhóm như sau:

\(\Rightarrow3S=\left(3^1+3^3+3^5\right)+\left(3^7+3^9+3^{11}+\right)+...+\left(3^{2011}+3^{2013}+3^{2015}\right)\)

\(\Rightarrow3S=273+\left[3^6.\left(3^1+3^3+3^5\right)\right]+...+\left[3^{2010}.\left(3^1+3^3+3^5\right)\right]\)

\(\Rightarrow3S=273+\left(3^6.273\right)+...+\left(3^{2010}.273\right)\)

\(\Rightarrow3S=273.\left(1+3^6+...+3^{2010}\right)\)

\(\Rightarrow3S=7.39.\left(1+3^6+...+3^{2010}\right)⋮7\)

Mà \(\left(3,7\right)=1\Rightarrow S⋮7\left(đpcm\right).\)

7 tháng 6 2018

Câu 1:

ta có: 1972 chia a dư 28 => 1972 - 28 chia hết cho a => 1944 chia hết cho a

2014 chia a dư 28 => 2014 - 28 chia hết cho a => 1986 chia hết cho a

=> a thuộc ƯC ( 1944;1986) = ( 2;-2;3;-3;6;-6;1;-1)

mà a là số tự nhiên và 1972;2014chia hết cho 1;-1;2;-2 ( Loại)

=> a thuộc (3;6)

mà a= 3 => 1972chia 3 dư 1( Loại)

a = 6 => 1972;  2014 chia 6 đều dư 28 (TM)

KL: a = 6

Câu2:

a) ta có: S = 3^0 + 3^2 +3^4+ 3^6 +...+ 3^2014

=> 3^2.S = 3^2 + 3^4+ 3^8 +...+3^2016

=> 9 .S - S = 3^2016 - 3^0

8.S = 3^2016-1

S = 3^2016-1/8

b) S = 3^0 + 3^2 + 3^4 +3^6 +...+ 3^2014

S = ( 3^0 + 3^2 + 3^4) + ( 3^6 + 3^8+ 3^10 ) + ...+( 3^2010+3^2012+3^2014)

S = 91 + 3^6.( 1+3^2 + 3^4) + ...+ 3^2010. (1+3^2+3^4)

S = 91. ( 1+ 3^6 + ...+ 3^2010)

S= 7.13. ( 1+3^6+...+3^2010) chia hết cho 7

=> S chia hết cho 7

23 tháng 12 2018

Câu 1:

Ta có:

abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
\(\Rightarrow a\le3\)
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
Có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
Lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
Vậy c chỉ có thể = 5 
Ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 
Vậy số abc là 195

23 tháng 12 2018

Câu 2:

SSH là: [ ( 2n - 1 ) - 1 ] : 2 + 1 = n ( số )

Tổng là: [ ( 2n - 1 ) + 1 ] . n : 2 = 2n . n : 2 = 2n2 : 2 = n2 

=> M là số chính phương