Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
p \(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)
=\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)
do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)
dạt a+b = t thì t>=4
cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)
\(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)
dau = xay ra khi a=b=2
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
( 99 - 1 ) : 2 + 1 = 50 ( số )
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Ta có:
\(a+b+c=\frac{1}{abc}\Rightarrow a^2+ab+ac=\frac{1}{bc}\)
Mà :
\(P=\left(a+b\right)\left(a+c\right)=a^2+ab+bc+ca=\frac{1}{bc}+bc\ge2\)
Áp dụng BĐT Côsi ta có:
\(P=\left(a+\frac{1}{b}+1\right)^2+\left(b+\frac{1}{a}+1\right)^2\ge\frac{\left(a+\frac{1}{b}+1+b+\frac{1}{a}+1\right)^2}{2}\) (BĐT quen thuộc)
\(=\frac{1}{2}\left[\left(\frac{1}{a}+\frac{4}{361}a\right)+\left(\frac{1}{b}+\frac{4}{361}b\right)+\frac{357}{361}\left(a+b\right)+2\right]^2\)
\(\ge\frac{1}{2}\left(\frac{4}{19}+\frac{4}{19}+\frac{357}{361}\cdot19+2\right)^2=\left(\frac{403}{38}\right)^2\)
Dấu "='' xảy ra khi: \(a=b=\frac{19}{2}\)
Sai thì bỏ qua:))
\(\left(a+\frac{1}{b}+1\right)^2+\left(b+\frac{1}{a}+1\right)^2\ge\frac{\left[\left(a+\frac{1}{b}+1\right)+\left(b+\frac{1}{a}+1\right)\right]^2}{2}\)\(=\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}+2\right)^2}{2}\)
\(\ge\frac{\left(a+b+\frac{4}{a+b}+2\right)^2}{2}=\frac{\left(19+\frac{4}{19}+2\right)^2}{2}=...\)
Dấu đẳng thức xảy ra khi \(a=b=\frac{19}{2}\)
Lời giải:
\(a+b=ab\Rightarrow \frac{1}{a}+\frac{1}{b}=1\)
Đặt \(\left(\frac{1}{a}, \frac{1}{b}\right)=(x,y)\) thì bài toán trở thành:
Cho $x,y>0$ thỏa mãn $x+y=1$. Tìm GTNN của biểu thức:
\(P=\frac{x^2}{2x+1}+\frac{y^2}{2y+1}+\frac{\sqrt{(x^2+1)(y^2+1)}}{xy}\)
-----------------------------
Áp dụng BĐT Cauchy-Schwarz, AM-GM:
\(\frac{x^2}{2x+1}+\frac{y^2}{2y+1}\geq \frac{(x+y)^2}{2x+1+2y+1}=\frac{1}{2+2}=\frac{1}{4}\)
\((x^2+1)(y^2+1)\geq (xy+1)^2\Rightarrow \frac{\sqrt{(x^2+1)(y^2+1)}}{xy}\geq \frac{xy+1}{xy}=1+\frac{1}{xy}\)
\(\geq 1+\frac{1}{\frac{(x+y)^2}{4}}=5\)
\(\Rightarrow P=\frac{x^2}{2x+1}+\frac{y^2}{2y+1}+\frac{\sqrt{(x^2+1)(y^2+1)}}{xy}\geq \frac{1}{4}+5=\frac{21}{4}\)
Vậy \(P_{\min}=\frac{21}{4}\Leftrightarrow x=y=\frac{1}{2}\Leftrightarrow a=b=2\)
Kurosaki Akatsu giải thế thì đề bài cho \(b^2+c^2\le a^2\) để làm gì?
Áp dụng bất đẳng thức AM-GM ta có :
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(P=\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge4.\sqrt[4]{\frac{b^2}{a^2}.\frac{c^2}{a^2}.\frac{a^2}{b^2}.\frac{a^2}{c^2}}=4.1=4\)
=> \(Min_P=4\)
\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)
\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)
\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)
\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
`A=(a+1/b)(b+1/a)`
`=ab+1+1+1/(ab)`
`=2+ab+1/(16ab)+15/(16ab)`
Áp dụng cosi
`=>ab+1/(16ab)>=1/2`
`ab<=(a+b)^2/4=1/4`
`=>16ab<=4`
`=>15/(16ab)>=15/4`
`=>A>=15/4+1/2+2=25/4`
Dấu "=" xảy ra khi `a=b=1/2`