K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)

9 tháng 12 2017

Từ \(a+b+c=0\) bạn tự chứng minh \(a^3+b^3+c^3=3abc\)

Đặt \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)

\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}\frac{\left(a-b\right)\left(c-a-b\right)}{ab}\)

                   \(=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự, ta có: \(A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)

26 tháng 12 2018

DTSBN

26 tháng 12 2018

*Nếu a + b + c = 0

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Thay vào M đc

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

  \(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

   \(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

   \(=-1\)

*Nếu \(a+b+c\ne0\)

Áp dụng t.c của dãy tsbn

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

\(\Rightarrow a=b=c\)

Thay vào M đc

\(M=\left(1+\frac{a}{a}\right)\left(1+\frac{b}{b}\right)\left(1+\frac{c}{c}\right)=2.2.2=8\)

Vậy ..............

13 tháng 11 2019

Ap dụng hằng đẳng thức.

\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{b^2}{\left(a-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(c-a\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\)

\(=\frac{\left(a+b\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b+c\right)\left(b-c\right)}{\left(b-c\right)\left(c-a\right)}\)

\(=\frac{a+b}{a-c}+\frac{b+c}{c-a}=\frac{a+b}{a-c}-\frac{b+c}{a-c}=1\left(đpcm\right)\)

13 tháng 11 2018

Với điều kiện như đề bài

Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)

Tướng tự: 

\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)

\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)

Em nhớ làm tiếp nhé!

13 tháng 11 2018

làm tiếp kiểu gì ạ