Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a) \(x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
b) \(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
c) \(2x^3-x^2-8x+4\)
\(=x^2\left(2x-1\right)-4\left(2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)
d) \(x\left(x-y\right)^2+y\left(x-y\right)^2-xy+x^2\)
\(=\left(x+y\right)\left(x-y\right)^2+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2+x\right)\)
e) \(2x^2-5x+2\)
\(=\left(2x^2-x\right)-\left(4x-2\right)\)
\(=x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
a.=3x2+12x-7x+20+2x3-3x2-2x3-5x
=(3x2-3x2)+(12x-7x-5x)+(2x3-2x3)+20
=20
b.=6x-3-5x+15+18x-24-19x
=(6x-5x+18x-19x)+(-3+15-24)
=-12
a) x(3x + 12) - (7x - 20) + x2(2x - 3) - x(2x2 + 5)
<=> x.3x + x.12 - 7x - 20 + x2.2x + x2.(-3) + (-x).2x2 + (-x).5
<=> 3x2 + 12x - 7x - 20 + 2x3 - 3x2 - 2x3 - 5x
<=> (3x2 - 3x2) + (12x - 7x - 5x) - 20 + (2x3 - 2x3)
<=> 0 + 0 - 20 + 0
<=> -20
=> biểu thức không phụ thuộc vào giá trị của biến
b) 3(2x - 1) - 5(x - 3) + 6(3x - 4) - 19x
<=> 3.2x + 3.(-1) + (-5).x + (-5).(-3) + 6.(3x) + 6.(-4) - 19x
<=> 6x - 1 - 5x + 15 + 18x - 24 - 19x
<=> (6x - 5x + 18x - 19x) + (-1 + 15 - 24)
<=> 0 - 10
<=> -10
=> biểu thức không phụ thuộc vào giá trị của biến
Bài 2:
a: (2x-1)(x2+5x-4)
\(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
b: \(=-\left(10x^2+15x-8x-12\right)\)
\(=-\left(10x^2+7x-12\right)\)
\(=-10x^2-7x+12\)
c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)
\(=7x^2-28x-14x^3+4x^2-25x-12\)
\(=-14x^3+11x^2-53x-12\)