Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\left(\frac{1}{2}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2016}+\frac{2009}{2018}\right)\times0\)
\(=0\)
\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).\left(\frac{1}{6}+\frac{2}{6}+\frac{3}{6}\right)\)
=\(\left(\frac{2012}{2015}+\frac{2011}{2016}+\frac{2010}{2017}+\frac{2009}{2018}\right).0\)
\(=0\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
1-1/2+1/3-1/4+1/5-1/6+...+1/2011-1/2012 / 1006-1006/1007-1007/1008-1008/1009-...-2010/2011-2011/2012
A = 1 + 2 + 3 + ... + 2018 (có 2018 số )
= (2018 + 1) . 2018 : 2 = 2037171
B = 1 + 3 + 5 + ... + 2017(có 1009 số )
= (2017 + 1) . 1009 : 2 = 1018081
C = 2 + 4 + 6 + ... + 2018 (Có 1009 số )
= (2018 + 2) x 1009 : 2 = 1019090
D = 72 . 153 + 27.153 + 153
= (72 + 27 + 1) . 153
= 100 . 153 = 15300
a)
Ta có a > b vì b > 3 còn a < 3
b)
a. Ta có : 1/51 + 1/52 + 1/53 +...+ 1/60 < 1/51 x 10 < 1/50 x 10 = 1/5
=> 1/51 + 1/52 +1/53 +...+1/60 < 1/5
b. Ta có : 1/51 + 1/52 + 1/53 +...+ 1/60 > 1/60 x 10 = 1/6
=> 1/51 + 1/52 +1/53 +...+ 1/60 > 1/6
* Xét tử số của K, ta nhận thấy:
Số 1 được lấy 2012 lần
Số 2 được lấy 2011 lần
Số 3 được lấy 2010 lần
........
Số 2011 được lấy 2 lần
Số 2012 được lấy 1 lần
Vậy tử số viết được thành: 2012x1+2011x2+2010x3+...+2x2011+1x2012
Nên \(K=1\)
\(=>\)\(K+2011=2012\)
Vậy \(K+2011=2012\)
Chắc chắn đúng nhé!!