Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 10x-9,9=0,1.x+9,9
<=> 100x-99=x+99
<=> 99x=99+99
<=> 99x=198 => x=198:99 => x=2
Đáp số: x=2
a) 5.(x-20) = 35
(x-20) = 35:5
x-20 = 7
x = 27
b) (x+125) -301 = 56
x+125 -301 = 56
x - 176 = 56
x = 56 +176
x= 232
c) 215 + (x-21):2 = 235
(x-21):2 = 235 - 215
(x-21):2 = 20
x-21 = 20 .2
x-21 = 40
x = 61
d) (x:23 +45) .67 = 8911
(x:23 +45) = 8911 : 67
x:23+45 = 133
x:23 = 133-45
x:23 = 88
x = 88.23
x = 2024
\(\frac{1}{2\cdot x}-2021-\frac{1}{4}-\frac{1}{12}-\frac{1}{24}-...-\frac{1}{222}=\frac{6}{11}\)
\(\frac{1}{2\cdot x}-2021-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{222}\right)=\frac{6}{11}\)
....
Cái dãy \(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{222}\) nó không có quy luật, không tính được
Sửa đề\(\frac{1}{2x-2021}-\frac{1}{4}-\frac{1}{12}-\frac{1}{24}-...-\frac{1}{220}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{10}-\frac{1}{11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}.\frac{10}{11}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{5}{11}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}=1\)
=> 2x - 2021 = 1
=> 2x = 2022
=> x = 1011
Vậy x = 1011
a) P = 9,8 + 8,7 + 7,6 + .... + 2,1 - 1,2 - 2,3 - 3,4 - ... - 8,9 ( có 16 số)
P = ( 2,1 - 1,2) + (3,2 - 2,3) + (4,3 - 3,4) + .... + (8,7 - 7,8) + (9,8 - 8,9) ( có 8 nhóm)
P = 0,9 + 0,9 + 0,9 + .... + 0,9 + 0,9
P = 0,9 x 8
P = 7,2
b) Q = 1.2 + 2.4 + 3.6 + 4.8 + 5.10 / 3.4 + 6.8 + 9.12 + 12.16 + 15.20
Q = 1.2.(12 + 22 + 33 + 44 + 55) / 3.4.(12 + 22 + 32 + 44 + 520
Q = 1.2/3.4
Q = 1/6
a) P = 9,8 + 8,7 + 7,6 + .... + 2,1 - 1,2 - 2,3 - 3,4 - ... - 8,9 ( có 16 số)
P = ( 2,1 - 1,2) + (3,2 - 2,3) + (4,3 - 3,4) + .... + (8,7 - 7,8) + (9,8 - 8,9) ( có 8 nhóm)
P = 0,9 + 0,9 + 0,9 + .... + 0,9 + 0,9
P = 0,9 x 8
P = 7,2
b) Q = 1.2 + 2.4 + 3.6 + 4.8 + 5.10 / 3.4 + 6.8 + 9.12 + 12.16 + 15.20
Q = 1.2.(12 + 22 + 33 + 44 + 55) / 3.4.(12 + 22 + 32 + 44 + 520
Q = 1.2/3.4
Q = 1/6
x+x.2,7+x.6,3=120
x.1+x.2,7+x.6,3=120
x.(1+2,7+6,3)=120
x. 10 =120
x=120:10
x=12
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1000}{1000}-\frac{1}{1000}+\frac{1000}{1000}\)
\(=\frac{1999}{1000}\)
Tham khảo nhé~
\(A=\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{100\cdot104}\)
\(A=\frac{7-4}{4\cdot7}+\frac{11-7}{7\cdot11}+\frac{15-11}{11\cdot15}+...+\frac{104-100}{100\cdot104}\)
\(A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(A=\frac{1}{4}-\frac{1}{104}\)
\(A=\frac{25}{104}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B\cdot2=\left(\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\right)\cdot2\)
\(B\cdot2=\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\)
\(B\cdot2=\frac{27-25}{25\cdot27}+\frac{29-27}{27\cdot29}+\frac{31-29}{29\cdot31}+...+\frac{75-73}{73\cdot75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{75}\)
\(B\cdot2=\frac{2}{75}\)
\(B=\frac{2}{75}\frac{\cdot}{\cdot}2\)
\(B=\frac{1}{75}\)
a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)
c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)
\(\Rightarrow x=9\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+.......+\dfrac{1}{x\cdot\left(x+1\right)}=\dfrac{122}{123}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{122}{123}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{122}{123}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{123}\)
\(\Leftrightarrow x=122\)
đây là toán lớp 5 mà có cả kí hiệu toán lớp 8 rồi giỏi ghê