K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

\(1)\) Ta có : 

\(xy+2x-y=5\)

\(\Leftrightarrow\)\(x\left(y+2\right)-y-2=3\)

\(\Leftrightarrow\)\(x\left(y+2\right)-\left(y+2\right)=3\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(y+2\right)=3\)

Đến đây bạn xét các trường hợp ra 

15 tháng 2 2018

Phần 1 có rồi , phần 2 nè !

Ta có \(M=\frac{-x+24}{x-15}=\frac{-x-15+15+24}{x-15}=\frac{-\left(x+15\right)+39}{x-15}=-1+\frac{39}{x-15}\)

Để M có giá trị lớn nhất thì \(\frac{39}{x-15}\)phải nhỏ nhất

Do đó x - 15 phải lớn nhất hay x - 15 là số nguyên âm lớn nhất

Khi đó x - 15 = -1 nên x = -16 ( thỏa mãn x thuộc Z )

Vậy.....

b,xy+3x-y=6
(xy+3x)-(y+3)=3 0,5
x(y+3)-(y+3) =3
(x-1)(y+3)=3=3.1=-3.(-1)    0,5
Có 4 trường hợp xảy ra :
; ; ;  
Từ đó ta tìm được 4 cặp số x; y thoả mãn là :
(x=4;y=-2) ; (x=2;y=0) ; (x=-2;y=-4) ; (x=0; y=-6)    1.0

phần a khó quá

20 tháng 1 2020

a) \(M=\left(2x-1\right)\left(2y-1\right)=4xy-2x-2y+1=4\left(xy\right)-2\left(x+y\right)+1\)

\(M=4.16-2.10+1=45\)

b) Ta có: 

\(\hept{\begin{cases}\left(x+2\right)^{2010}\ge0\\|y-\frac{1}{5}|\ge0\end{cases}}\left(\forall x,y\in R\right)\)

Khi đó \(N=\left(x+2\right)^{2010}+|y-\frac{1}{5}|-10\ge-10\)

Dấu "=" xảy ra khi x + 2 = 0 và y - 1/5 = 0 

Suy ra x = -2 và y = 1/5