K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔEAM và ΔNAD có 

AE=AN(gt)

\(\widehat{EAM}=\widehat{NAD}\)(hai góc đối đỉnh)

AM=AD(A là trung điểm của MD)

Do đó: ΔEAM=ΔNAD(c-g-c)

Suy ra: ME=ND(Hai cạnh tương ứng)

11 tháng 1 2018

         Đi đâu mà vội mà vàng

Mà vấp phải đá mà quàng phải dây

5 tháng 12 2018

bn phải ra đề bài thì mọi người mới giúp đc bn chứ

22 tháng 12 2015

a) Xét tứ giác ABCD, có:

AC và BD là 2 đường chéo cắt nhau tại M

M là trung điểm AC (gt)

M là trung điểm BD (BF= DE - gt)

=> tứ giác ABCD là hình bình hành

Xét tg ABC và tg CDA có:

AB = CD (2 cạnh bên hình bình hành)

góc BAC = góc ACD (so le trong của AB//DC - 2 cạnh hình bình hành)

AC là cạnh chung

=> tg ABC = tg CDA (đpcm)

b) xét tg ABF và tg CDE, có:

AB = DC (2 cạnh bên hình bình hành)

góc ABF = góc ADC (2 góc đối hình bình hành bằng nhau)

BF = DE (gt)

=> tg ABF = tg CDE (c-g-c)

=> góc DEC = góc AFB (2 góc tương ứng)

mà góc DEC = 90 độ (CE vuông góc AD - gt)

=> góc AFB = 90 độ

=> AF vuông góc với BC (gt)

c) ta có: AD // BC (2 cạnh hình bình hành)

=> góc DEC = góc ECB (so le trong)

=> góc DEC = góc ECB = 90 độ

xét tứ giác AECF có:

góc AEC = góc ECF = góc AFC = 90 độ

=> tứ giác AECF là hình chữ nhật

có AC và EF là 2 đường chéo

mà 2 đường chéo hình chữ nhật cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm AC (gt)

=> M cũng là giao điểm 2 đường chéo hình chữ nhật

=> M là trung điểm EF

=> M,E,F thẳng hàng (đpcm)

26 tháng 11 2018

1 Xét 2 tam giác MAB và tam giác MDC:

Ta thấy:

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

BM=MC (gt)

MA=MD (gt)

Từ các giả thiết trên, suy ra:

\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC