Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn 2 trong n đỉnh của đa giác ta lập được 1 cạnh hoặc đường chéo.(n>=3,n thuộc N*)
Số cạnh và đường chéo là C2n (đường).
⇒ Số đường chéo của đa giác n cạnh là C2n−n (đường).
Theo đề bài, số đường chéo gấp đôi số cạnh nên ta có phương trình:
C2n−n=2n⇔n!/2!(n−2)!=3n
⇔n(n−1)(n−2)!/2(n−2)!=3n
⇔n(n−1)=6n
⇔n^2−7n=0
⇔[n=7(tm) n=0(ktm)
Vậy đa giác cần tìm có 7 cạnh.
a) Tính số đường chéo của đa giác có 24 cạnh
b) Tính số cạnh của đa giác biết đường chéo là 170 đường
a) \(\frac{\left(24-3\right).24}{2}=252\)đường chéo
b) \(\left(n-3\right).n=340\)
\(n^2-3n=340\)
\(n^2-3n-340=0\)
\(n^2-20n+17n-340=0\)
\(n\left(n-20\right)+17\left(n-20\right)\)
\(\left(n+17\right)\left(n-20\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}n+17=0\\n-20=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=-17\\n=20\end{cases}}\)
n = -17 ( loại )
n = 20 ( nhận )
Vậy n = 20 hay số cạnh của đa giác là 20
1 Đa giác có n cạnh có :
- Số đường chéo từ 1 đỉnh là : (n - 3)
- Số đỉnh là n
Do 1 đường chéo nối 2 đỉnh
=> 1 Đa giác có n cạnh có n(n - 3)/2 đường chéo
biết tổng số đường chéo là 170
=> n(n - 3)/2 = 170
=> n² - 3n - 340 = 0
∆ = (-3)² - 4.(-340) = 1369
=> √∆ = 37
=> n = ... (tự giải)
Xét đa giác có n cạnh hay n góc
1
a) Một góc trong tạo với 1 góc ngoài kề với nó tạo ra 1 góc bẹt => Có n góc bẹt, tổng chúng là 1800n
Ta có tổng các góc trong đa giác có n góc là (n−2)1800(n−2)1800
=> tổng các góc ngoài là 1800n - (n−2)1800(n−2)1800 = 3600
b.Ta có số đường chéo của đa giác n cạnh là \(\frac{n\left(n-3\right)}{2}\)
Ta có: 3n= \(\frac{n\left(n-3\right)}{2}\) ⇔6n=n(n−3)⇔6=n−3⇔n=9
Một góc trong tạo với 1 góc ngoài kề với nó tạo ra 1 góc bẹt => Có n góc bẹt, tổng chúng là 1800n
Ta có tổng các góc trong đa giác có n góc là (n - 2) 180
=> tổng các góc ngoài là 180on - (n - 2) 180 = 3600
Ta có số đường chéo của đa giác n cạnh là:\(\frac{n\left(n-3\right)}{2}\)
Ta có : \(3n=\frac{n\left(n-3\right)}{2}\Leftrightarrow6n=n\left(n-3\right)\Leftrightarrow6=n-3\Rightarrow n=9\)
Gọi số cạnh là n
Ta có công thức tính mỗi góc của đa giác đều n cạnh là :
\(\frac{\left(n-2\right).180^0}{n}\)
Đa giác đều có số đường chéo bằng số cạnh
\(\Rightarrow\)Đa giác đều đó là tam giác đều và tổng số đo mỗi góc là \(60^o\)
Số đường chéo của một đa giác \(n\) cạnh \(\left(n>3\right)\)được tính bởi công thức \(\frac{n\left(n-3\right)}{2}\)
a) Số đường chéo bằng số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=n\Leftrightarrow n^2-3n=2n\Leftrightarrow n^2-5n=0\Leftrightarrow n\left(n-5\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=5\left(nhận\right)\end{cases}}\)
Vậy hình ngũ giác có số đường chéo bằng số cạnh.
Số đường chéo gấp đôi số cạnh có nghĩa là \(\frac{n\left(n-3\right)}{2}=2n\Leftrightarrow n^2-3n=4n\Leftrightarrow n^2-7n=0\Leftrightarrow n\left(n-7\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\left(loại\right)\\n=7\left(nhận\right)\end{cases}}\)
Vậy hình thất giác có số đường chéo gấp đôi số cạnh.
Các bạn ơi giúp mik với