Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải ở dưới được 2 câu rùi nhưng ko chắc cau 2 ~~~
5465765756876
1. 2/5 + x= 11/12 - 2/5
=> x= 31/60 - 2/5
=> x= 7/60
Vậy x= 7/60
2. 2x(x - 1/7)= 0
TH1: x=0
TH2: x= 0 + 1/7 = 1/7
Vậy x= 0 hoặc 1/7
3. 1/4 : x= 2/5 - 3/4
=> x= 1/4 : (-7/20)
=> x= -5/7
Vậy x= -5/7
2) => \(-\frac{5}{42}-x=-\frac{18}{28}\) => \(-x=\frac{5}{42}-\frac{18}{28}=\frac{10}{84}-\frac{54}{84}=-\frac{44}{84}\)
=> \(x=\frac{44}{84}=\frac{11}{21}\)
3) => \(x=-\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)=-\left(\frac{10}{60}+\frac{6}{60}-\frac{4}{60}\right)=-\frac{12}{60}=-\frac{1}{5}\)
4) => \(\frac{x}{5}=\frac{2}{10}-\frac{1}{5}-\frac{7}{50}=\frac{1}{5}-\frac{1}{5}-\frac{7}{50}=-\frac{7}{50}\)
=> \(x=5.\frac{-7}{50}=-\frac{7}{10}\)
a)\(\frac{-15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)
\(\frac{-5}{6}-x+\frac{2}{6}=\frac{25}{27}\)
\(\frac{-1}{2}-x=\frac{25}{27}\)
\(x=\frac{-77}{54}\)
Vậy............
b) \(\frac{-3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)
\(\frac{-12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)
\(\frac{-11}{20}-2x=\frac{15}{20}\)
\(2x=\frac{-13}{10}\)
\(x=\frac{-13}{20}\)
Vậy.............
1.
\(a,-\frac{15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)
\(-\frac{5}{6}-x+\frac{2}{6}=\frac{25}{27}\)
\(-\frac{1}{2}-x=\frac{25}{27}\)
\(x=-\frac{77}{54}\)
\(b,-\frac{3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)
\(-\frac{12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)
\(-\frac{11}{20}-2x=\frac{15}{20}\)
\(2x=-\frac{13}{10}\)
\(x=-\frac{13}{20}\)
2.
\(a,-\frac{5}{6}\)và \(1,2\)
\(=-\frac{5}{6}\)và \(\frac{12}{10}\)
\(=-\frac{50}{60}\)và \(\frac{72}{60}\)
Nếu như quy đồng 2 số lên thì ta đc \(-\frac{50}{60}< \frac{72}{60}\)
\(\Rightarrow-\frac{5}{6}\)\(< 1,2\)
\(b,\frac{15}{16}\)và \(\frac{17}{18}\)
Theo như những bài toán đã hc thìn ội dung ở cuối bài là phân số nào có tử bé hơn thì có phân số lớn hơn phân số có tử lớn hơn
\(\Rightarrow\frac{15}{16}>\frac{17}{18}\)
\(c,\frac{1999}{2000}\)và \(\frac{2000}{2001}\)
Ta quy đồng
Đc
\(\frac{3999999}{4002000}\)và \(\frac{4000000}{4002000}\)
\(\Rightarrow\frac{1999}{2000}< \frac{2000}{2001}\)