Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)
Có \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
......
\(\frac{1}{2011^2}< \frac{1}{2010.2011}\)
=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2010.2011}\)
=> \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2010}-\frac{1}{2011}\)
=> \(A< 1-\frac{1}{2011}< 1\)
=> A < 1
=> A < B
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-1\right).\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)\left(1-\frac{3}{2010}\right)....0.\left(1-\frac{2011}{2010}\right)\)
\(A=0\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)
\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...0.\left(1-\frac{2011}{2010}\right)\)
\(\Rightarrow A=0\)
( Vì 0 nhân với số nào cũng bằng 0 )
Ta có : A = 1/1.2 + 1/2.3 + .... + 1/98.99 + 1/99.100 .
=> A = 1 - 1/2 + 1/2 - 1/3 + .... + 1/98 - 1/99 + 1/99 - 1/100 .
=> A = 1 - 1/100 .
=> A = 99/100 .
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}\)
\(\Rightarrow A=\frac{99}{100}\)
1)
a) A = 21 + 22 + … + 22010
= (21 + 22) + (23 + 24) + … + (22009 + 22010)
= 2(1 + 2) + 23(1 + 2) + … + 22009(1 + 2)
= 2.3 + 23.3 + … + 22009.3
Vì 3 chia hết cho 3 nên A chia hết cho 3.
A = 21 + 22 + … + 22010
= (21 + 22 + 23) + (24 + 25 + 26) + … + (22008 + 22009 + 22010)
= 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 22008(1 + 2 + 22)
= 2.7 + 24.7 + … + 22008.7
Vì 7 chia hết cho 7 nên A chia hết cho 7.
b) B = 31 + 32 + … + 32010
= (31 + 32 )+ (33 + 34) + (35 + 36) + … + (32009 + 32010)
= 3(1 + 3) + 33(1 + 3) + … + 32009(1 + 3)
= 3.4+ 33.4 + … + 32009.4
Vì 4 chia hết cho 4 nên B chia hết cho 4.
B = 31 + 32 + … + 32010
= (31 + 32 + 33) + (34 + 35 + 36) + … + (32008 + 32009 + 32010)
= 3(1 + 3 + 32) + 34(1 + 3 + 32) + … + 32008(1 + 3 + 32)
= 3.13 + 34.13 + … + 32008.13
Vì 13 chia hết cho 13 nên B chia hết cho 13.
c) C = 51 + 52 + … + 52010
= (51 + 52 +53 + 54) + … + (52007 + 52008 + 52009 + 52010)
= 5(1 + 5 + 52 + 53) + … + 52007(1 + 5 + 52 + 53)
= 5.156 + … + 52007.156
Vì 156 chia hết cho 6, 12 nên C chia hết cho 6 và 12.
2)
a) Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1
Vậy A = B ( vì đều bằng 22011 – 1 )
b) Ta có: A = 2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009
B = 20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010
Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.
c) Ta có: A = 1030 = 103.10 = (103)10 = 10010
B = 2100 = 210.10 = (210)10 = 102410
Vì 10010 < 102410 nên A < B.
d) Ta có: A = 333444 = 3334.111 = (3334)111
B = 444333 = 4443.111 = (4443)111
Ta so sánh 3334 và 4443
3334 = (3.111)4 = 34.1114 = 81.111.1113
4443 = (4.111)3 = 43.1113 = 64.1113
Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.
2)a) Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1
Vậy A = B ( vì đều bằng 22011 – 1 )
b) Ta có: A = 2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009
B = 20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010
Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.
c) Ta có: A = 1030 = 103.10 = (103)10 = 10010
B = 2100 = 210.10 = (210)10 = 102410
Vì 10010 < 102410 nên A < B.
d) Ta có: A = 333444 = 3334.111 = (3334)111
B = 444333 = 4443.111 = (4443)111
Ta so sánh 3334 và 4443
3334 = (3.111)4 = 34.1114 = 81.111.1113
4443 = (4.111)3 = 43.1113 = 64.1113
Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.