Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
Từ \(\dfrac{9x}{4}\)=\(\dfrac{16}{x}\)
9x\(^2\)=4*16=69
=>x\(^2\)=69/9=\(\dfrac{64}{9}\)
=>x=\(\dfrac{-8}{3}\)
Giải:
Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)
Nên \(2016a+13b-1\) và \(2016^a+2016a+b\) là 2 số lẻ \((*)\)
Ta xét 2 trường hợp:
Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn
Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ
Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))
Trường hợp 2: Nếu \(a=0\) thì:
\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)
\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)
Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)
Và \(13b-1>b+1\)
\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)
\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)
\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)
Vậy \(\left(a,b\right)=\left(0;12\right)\)
Kẻ Cz//By (z thuộc nửa mặt phẳng bờ AC chứa B)
Ta có: góc zCB=góc CBy = 30 độ (so le trong)
Mà góc zCB + góc zCA=120 độ
=> góc zCA=90 độ.
=> Cz//Ax (cùng vuông góc AC)
Mà Cz//By => Ax//By
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
a: \(\widehat{B}=\widehat{Q}=55^0\)
ta có: ΔABC=ΔPQR
nên \(\widehat{A}=\widehat{P};\widehat{C}=R\)
=>\(3\cdot\widehat{P}=2\cdot\widehat{R}\)
\(\Leftrightarrow\widehat{P}=\dfrac{2}{3}\widehat{R}\)
\(\widehat{P}+\widehat{R}=180^0-55^0=125^0\)
\(\widehat{P}=125^0\cdot\dfrac{2}{5}=50^0\)
\(\widehat{R}=125^0-50^0=75^0\)
b: Ta có: ΔABC=ΔGIK
nên AB=GI; BC=IK; AC=GK
=>AB:BC:AC=GI:IK:GK=2:3:4 và CABC=36(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{2}=\dfrac{BC}{3}=\dfrac{AC}{4}=\dfrac{AB+AC+BC}{2+3+4}=\dfrac{36}{9}=4\)
Do đó: AB=8cm; BC=12cm; AC=16cm
Bài 1:
A B C . . / D E F / // // x x
a) Xét \(\Delta AED\) và \(\Delta CEF\)có:
AE = EC (gt)
\(\widehat{AED}=\widehat{CEF}\left(đđ\right)\)
DE = EF (gt)
Do đó: \(\Delta AED=\Delta CEF\left(c-g-c\right)\)
=> AD = CF (hai cạnh tương ứng)
mà AD = DB (D là trung điểm của BA)
=> CF = DB
b) Vì \(\Delta AED=\Delta CEF\left(c-g-c\right)\)
=> \(\widehat{DAE}=\widehat{FCE}\) (hai cạnh tương ứng)
=> DA // CF
mà D nằm giữa đoạn thẳng AB (D là trung điểm của AB)
=> DB // CF
=> \(\widehat{BDC}=\widehat{FCD}\left(soletrong\right)\)
Xét \(\Delta BDC\) và \(\Delta FCD\) có:
DC (chung)
\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)
BD = CF (cmt)
Do đó: \(\Delta BDC=\Delta FCD\left(c-g-c\right)\)
c) Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)
=> \(\widehat{BCD}=\widehat{FCD}\) (hai cạnh tương ứng)
=> DF // BC (soletrong)
hay DE // BC
Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)
=> DF = BC (hai cạnh tương ứng)
mà \(DE=\dfrac{1}{2}DF\) (D là trung điểm của DF)
=> \(DE=\dfrac{1}{2}BC\)