Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}-1\left(đkxđ:x\ge4\right)\)
Đặt \(x-3\)là \(u\)thì phương trình đã cho tương đương :
\(\sqrt{u+2\sqrt{u-1}}=2\sqrt{u-1}-1\)\(\left(u\ge1\right)\)
\(< =>u+2\sqrt{u-1}=2\left(u-1\right)-4\sqrt{u-1}+1\)
\(< =>u-1+6\sqrt{u-1}-2\left(u-1\right)=0\)
\(< =>6\sqrt{u-1}-\left(u-1\right)=0\)
Đặt \(\sqrt{u-1}\)là \(v\)thì phương trình tương đương :
\(6v-v^2=0\left(v\ge0\right)\)
\(< =>\orbr{\begin{cases}v=0\\v=6\end{cases}}\)
Với \(v=0< =>\sqrt{u-1}=0\)
\(< =>u=1< =>x-3=0< =>x=3\left(tm\right)\)
Với \(v=6< =>\sqrt{u-1}=6\)
\(< =>u=37< =>x-3=37< =>x=40\left(tm\right)\)
Vậy tập nghiệm của phương trình trên là {3;40}
sửa lại cho mình là 3 ( ktm )
Cái kết luận sửa lại là 40 thôi nhé
ĐKXĐ: \(x\ge-1\)
\(x^2+4=3\sqrt{\left(x+1\right)\left(x^2-2x+2\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-2x+2}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2=x^2+4\)
Pt trở thành:
\(2a^2+b^2=3ab\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{x^2-2x+2}\\2\sqrt{x+1}=\sqrt{x^2-2x+2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=x^2+2x+2\\4\left(x+1\right)=x^2-2x+2\end{matrix}\right.\)